切换
资源分类
文档管理
收藏夹
最新动态
登陆
注册
关闭
返回
下载
相似
相似资源:
自然资源保护协会-中国水泥生产碳减排技术标准体系和碳排放权交易标准体系研究(执行摘要)-12页.pdf
中银国际:政策推动+盈利模式完善,迎接大储放量元年.pdf
中原证券:锂电池销量环比回落,短期谨慎关注.pdf
中泰证券:沿海动力煤价支撑仍强,焦煤需求旺季即将到来.pdf
中信建投:七月社会总用电量维持高增,水力发电量环比改善.pdf
中国上市公司碳中和信息披露质量报告(2020-2022)--西北工业大学.pdf
中国再生资源回收行业发展报告(2023).pdf
中国海外煤电投资建设风险预警研究报告——印度尼西亚国别研究-绿色和平.pdf
中国城市绿色低碳建材应用现状评估报告-中国建筑节能协会.pdf
招商证券:工具行业锂电化+智能化趋势下,中国制造从幕后走向台前.pdf
浙商证券:盘古智能-风机润滑系统行业龙头,布局液压变桨引领国产替代.pdf
粤港澳大湾区气候协同的空气质量改善战略研究报告--北京大学.pdf
引领城市空中出租车变革(英) Volocopter 2019-6.pdf
徐伟:双碳目标下的热泵发展.pdf
信达证券:电力消费增速有所收窄,重磅电改政策有望落地.pdf
中国臭氧-颗粒物和温室气体协同控制的中长期战略研究--北京大学.pdf
向人人享有环境可持续的经济和社会公正过渡-国际劳工组织.pdf
正当其时、适逢其势:2023中国基础设施REITs可持续发展行动调研报告-普华永道.pdf
浙江省产品碳足迹核算与碳标签推广研究--浙江经济信息中心.pdf
文明的温度:气候变化对西北地区生态、产业及文化遗产系统性影响评估(甘肃)--绿色和平.pdf
投资气候,投资增长-OECD.pdf
资源描述:
Numerical simulation of BaSi2 homojunction solar cells The n-BaSi2/p-BaSi2500 nm/p-BaSi2 homojunction thin-film solar cell has obtained 0.28 cell efficiency experimentally, but the cell efficiency is far from the theoretical value of BaSi2 material. There is no further explanation in theory about the defects of p-BaSi2/n-BaSi2 homojunction solar cell devices. We use SCAPS-1D simulation software to simulate the window layer and absorber layer of p-BaSi2/n-BaSi2 solar cells, respectively, and explain the mechanism of the effect of absorber layer defects and window layer on device performance. Introduction Research background and device design Conclusion ⚫ The maximum efficiency of P-BaSi2/n-BaSi2 homojunction solar cells is close to 26. ⚫ The maximum opening voltage of P-BaSi2/n-BaSi2 homojunction solar cell is about 0.85 V, and the maximum current is about 34mA/cm2. ⚫ The introduction of the n-BaSi2 buffer layer in the device structure of p-BaSi2/n-BaSi2/n-BaSi2/n-Si effectively reduces the efficiency loss caused by the energy band mismatch and defects caused by the n-Si substrate. ➢ As the thickness of the window layer increases, the current of the battery device is significantly reduced, because the increase in the thickness of the window layer leads to more recombination centers. This increases the leakage current of the device. ➢ When the thickness of the window layer is about 20nm, the efficiency of p-BaSi2/n-BaSi2 is close to 26 . The absorber layer is generally thicker than the window layer. In order to maintain the performance of the device, we need the absorber layer to have a lower carrier concentration, which requires our absorber layer to have a low defect concentration. It can be seen from the figure that when the defect concentration of the absorber layer is close to 1 1015cm-3, the open circuit voltage, current, FF and efficiency of the P-BaSi2/n- BaSi2 homojunction solar cell are all decreasing. ➢At a lower carrier concentration in the absorption layer, the carrier concentration in the window layer will not affect the performance of the device. ➢When the carrier concentration in the absorption layer is higher, the carrier concentration in the window layer increases, and the efficiency of the device increases significantly, but the current will decrease to a certain degree at this time. This may be due to the increase in carrier concentration in the absorber layer, which increases the series resistance. The effect of carrier concentration on device performance The influence of window layer thickness on device performance Optimization of the absorption layer Fei Li, Weijie Du, Yiwen Zhang Key Laboratory of Optoelectronic Material and Device, Mathematics and Science College, Shanghai Normal University 200234, China 18275448352163.com ◆ Suitable forbidden band width 1.3 eV ◆ absorption coefficient a 3 104 cm-1 ◆ minority carrier lifetime 10 μs ◆ minority carrier diffusion length 10 mm ➢The addition of n-Si substrate makes the theoretical efficiency of the device drop directly from 25.47 to 12.16. In order to avoid the formation of a potential barrier region between the n-Si substrate and n- BaSi2, the carrier transport is hindered, resulting in unsatisfactory device theoretical efficiency. ➢We designed the device structure of p-BaSi2/n-BaSi2/n-BaSi2/n-Si and simulated it, and found that the introduction of the n-BaSi2 buffer layer effectively reduced the energy band caused by the n-Si substrate Mismatches and efficiency losses due to defects. Figure 1 BaSi2 is composed of abundant reserves of Ba and Si. Figure 1 BaSi2 is a common indirect bandgap semiconductor, but its energy state near the bottom of the conduction band changes more slowly. Compared with common indirect bandgap semiconductors, the probability of direct transitions in BaSi2 is greatly increased. BaSi2 has the property of large absorption coefficient of direct band gap semiconductor. n-BaSi2 p-BaSi2 Rear electrode Transparent conductive electrode Transparent conductive electrode n-BaSi2 i-BaSi2 p-BaSi2 Rear electrode Light Light a b Figure 2 1E16 1E17 1E18 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 E ff N D n-BaSi 2 cm-3 NA1E18 cm -3 NA5E18 cm -3 NA1E19 cm -3 NA5E19 cm -3 1E16 1E17 1E18 68 70 72 74 76 78 80 82 84 86 FF N D n-BaSi 2 cm -3 NA1E18 cm -3 NA5E18 cm -3 NA1E19 cm -3 NA5E19 cm -3 1E16 1E17 1E18 17 18 19 20 21 22 23 24 J sc mA/cm 2 N D n-BaSi 2 cm -3 NA1E18 cm -3 NA5E18 cm -3 NA1E19 cm -3 NA1E19 cm -3 1E16 1E17 1E18 0.65 0.70 0.75 0.80 0.85 0.90 V oc V N D n-BaSi 2 cm -3 NA1E18 cm -3 NA5E18 cm -3 NA1E19 cm -3 NA5E19 cm -3 a c d b 50 100 150 200 5 10 15 20 25 E ff p -BaSi 2 nm NA1E18cm -3 NA5E18cm -3 NA1E19cm -3 NA5E19cm -3 50 100 150 200 0.73 0.74 0.75 0.76 0.77 0.78 V oc V p -BaSi 2 nm NA1E18cm -3 NA5E18cm -3 NA1E19cm -3 NA5E19cm -3 50 100 150 200 5 10 15 20 25 30 35 J sc mA/cm 2 p -BaSi 2 nm NA1E18 cm -3 NA5E18 cm -3 NA1E19 cm -3 NA5E19 cm -3 50 100 150 200 82.0 82.5 83.0 83.5 84.0 FF p -BaSi 2 nm NA1E18cm -3 NA5E18cm -3 NA1E19cm -3 NA5E19cm -3 (a) (d) (b) (c) 500 1000 1500 2000 2500 3000 3500 4000 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20.0 Eff n-BaSi 2 Thick nm 500 1000 1500 2000 2500 3000 3500 4000 26.8 27.0 27.2 27.4 27.6 27.8 28.0 28.2 28.4 28.6 J sc mA/cm 2 n-BaSi 2 Thicknm 500 1000 1500 2000 2500 3000 3500 4000 85.52 85.54 85.56 85.58 85.60 85.62 85.64 FF n-BaSi 2 Thicknm 500 1000 1500 2000 2500 3000 3500 4000 0.810 0.815 0.820 0.825 0.830 0.835 0.840 V oc (V) n-BaSi 2 Thicknm c b d a Figure 3 -窗口层 吸收层 Sun Light n-BaSi2 P-BaSi2 n-Sin-BaSi2 a b 0.0 0.2 0.4 0.6 0.8 -15 -20 -25 -30 -35 -40 -45 E FF 17.51 E FF 12.16 Current density mA/cm 2 Voltage V E FF 25.47 窗口层 吸收层 Sun Light n-BaSi2 P-BaSi2
点击查看更多>>
收藏
下载该资源
京ICP备10028102号-1
电信与信息服务业务许可证:京ICP证120154号
地址:北京市大兴区亦庄经济开发区经海三路
天通泰科技金融谷 C座 16层 邮编:102600