切换
资源分类
文档管理
收藏夹
最新动态
登陆
注册
关闭
返回
下载
相似
相似资源:
自然资源保护协会-中国水泥生产碳减排技术标准体系和碳排放权交易标准体系研究(执行摘要)-12页.pdf
中银国际:政策推动+盈利模式完善,迎接大储放量元年.pdf
中原证券:锂电池销量环比回落,短期谨慎关注.pdf
中泰证券:沿海动力煤价支撑仍强,焦煤需求旺季即将到来.pdf
中信建投:七月社会总用电量维持高增,水力发电量环比改善.pdf
中国上市公司碳中和信息披露质量报告(2020-2022)--西北工业大学.pdf
中国再生资源回收行业发展报告(2023).pdf
中国海外煤电投资建设风险预警研究报告——印度尼西亚国别研究-绿色和平.pdf
中国城市绿色低碳建材应用现状评估报告-中国建筑节能协会.pdf
招商证券:工具行业锂电化+智能化趋势下,中国制造从幕后走向台前.pdf
浙商证券:盘古智能-风机润滑系统行业龙头,布局液压变桨引领国产替代.pdf
粤港澳大湾区气候协同的空气质量改善战略研究报告--北京大学.pdf
引领城市空中出租车变革(英) Volocopter 2019-6.pdf
徐伟:双碳目标下的热泵发展.pdf
信达证券:电力消费增速有所收窄,重磅电改政策有望落地.pdf
中国臭氧-颗粒物和温室气体协同控制的中长期战略研究--北京大学.pdf
向人人享有环境可持续的经济和社会公正过渡-国际劳工组织.pdf
正当其时、适逢其势:2023中国基础设施REITs可持续发展行动调研报告-普华永道.pdf
浙江省产品碳足迹核算与碳标签推广研究--浙江经济信息中心.pdf
文明的温度:气候变化对西北地区生态、产业及文化遗产系统性影响评估(甘肃)--绿色和平.pdf
投资气候,投资增长-OECD.pdf
资源描述:
See discussions, stats, and author profiles for this publication at https//www.researchgate.net/publication/336135721 Surface Passivation of Crystalline Silicon Solar Cells Past, Present and Future Presentation · April 2019 CITATIONS0 READS792 3 authors, including Some of the authors of this publication are also working on these related projects Determination of the Uncertainty of the Absorption Coefficient of Crystalline Silicon View project NanoPERC View project Jan Schmidt Institute for Solar Energy Research ISFH 320 PUBLICATIONS 12,797 CITATIONS SEE PROFILE Robby Peibst Institute for Solar Energy Research ISFH 143 PUBLICATIONS 2,383 CITATIONS SEE PROFILE All content following this page was uploaded by Jan Schmidt on 30 September 2019. The user has requested enhancement of the downloaded file. SiliconPV 2019 Leuven, Belgium, 10 th April 2019 Surface passivation of crystalline silicon solar cells Past, present and future J. Schmidt, 1,2 R. Peibst 1,3 and R. Brendel 1,2 1 Institute for Solar Energy Research Hamelin ISFH, Germany 2 Institute of Solid-State Physics, Leibniz University Hannover, Germany 3 Institute of Electronic Materials and Devices, Leibniz University Hannover, Germany https//commons.wikimedia.org/ Wolfgang Pauli, 1900-1958 Nobel Prize in Physics, 1945 God made the bulk; the surface was invented by the devil. –Wolfgang Pauli The Si/SiO 2 interface is the sine qua non of the semiconductor industry, and what most distinguishes silicon from all other material alternatives. SiO 2 as a key enabler in microelectronics and photovoltaics Michael Riordan, “From Bell labs to silicon Valley A saga of semiconductor technology transfer, 1955-61”, The Electrochemical Society Interface 2007, p. 36-41. Stefan Glunz, Frank Feldmann, “SiO 2 surface passivation layers –a key technology for silicon solar cells”, Sol. En. Mat. Sol. Cells 185, 260 2018. Jean Hoerni, “Planar Silicon Transistors and Diodes,” Fairchild Semiconductor Corp. Report No. TP-14, 1961 Stanford University Archives Surface passivation of silicon solar cells by dielectric layers Fundamental mechanisms of surface passivation it D Silicon C E V E f Q C E V E ‘Chemical passivation’ ‘Population control’ Saturation of interface states e.g. by hydrogen Reduction of interface state density D it Reduction of one carrier type at interface Realized via -fixed charge density Q f -doping of a surface-near region Dopant-diffused solar cells n c-Si p-type Ag dielectric front passivation dielectric rear passivation - C D A B p Al front pass i vation c-Si n along line A-B ‐ re ar passiva tion electron s elective hole s elec tive silicon wafer E n ergy Position ‐ Unmetallized surfaces Dielectric- layer passivation Metallized surfaces Passivation via doping alonglineC-D n -diffused c-Si surfaces SiO 2 A. Cuevas et al., J. Appl. Phys. 80, 3370 1996. Minimize overall J 0 by -high doping under metal contacts -low doping for surfaces passivated by dielectric layer Pragmatic approach homogeneously doped emitter of intermediate sheet resistance “Selective emitter” SiN x passivation of n -diffused surfaces J. Schmidt et al., Semicond. Sci. Technol. 16, 164 2001. High-temperature SiO 2 provides excellent passivation, but difficult to transfer to industrial cell production Low-temperature PECVD-SiN x provides only slightly higher J 0 SiO 2 /SiN x provide combination of excellent J 0 and is industrial feasible SiN x industrial standard today Sheet resistance [/sq] 0 100 200 300 400 500 R e com b i n at i o n cur r e nt p ar am et er J 0 [fA / c m 2 ] 1 10 100 phosphorus-diffused n -Si SiN x SiO 2 /SiN x alnealed SiO 2 Positive- and negative-charge dielectrics on undiffused p-Si surfaces Parasitic shunting for positively charged dielectric layer e.g. SiN x on p-Si No parasitic shunting occurs for negatively charged dielectric layer Al 2 O 3 provides very high negative charge density Q f in combination with low D it S. Dauwe, J. Schmidt, A. Metz, and R. Hezel, Proc. 29th IEEE PVSC 2002, p. 162 Al 2 O 3 optimal dielectric for p-Si rear passivation J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. van de Sanden, W. Kessels, Prog. Photovolt. 16, 461 2008. B. Hoex, J. Schmidt, P. Pohl, M. van de Sanden, W. Kessels, J. Appl. Phys. 104, 044903 2008. Firing-stable Al 2 O 3 /SiN x stacks Thin Al 2 O 3 single-layers degrade during firing Al 2 O 3 /SiN x stacks provide S eff 28 for all combinations with poly-Si for both polarities Combinations of selective layers max [] Seh Electron-selective contacts P-diffused n a-SiHi /a-SiHn th-SiO x / poly-Sin PECVD th-SiO x / poly-Sin LPCVD chem-SiO x / poly-Sin LPCVD SiO x /TiO y MgO x H o l e - s e l ec t i v e c o n ta c t s Al-p 24.5 PERC 11.7 26.8 12.8 26.9 12.8 27.1 12.9 27.1 13.0 26.3 12.5 24.9 11.9 a-SiHi/p 24.7 11.8 27.5 HIT 13.2 27.7 13.3 27.9 13.5 28.0 13.5 26.8 12.8 25.1 12.0 SiO x / poly-Sip 24.9 11.9 28.1 13.6 28.3 13.8 28.7 14.2 28.7 14.2 27.3 13.1 25.4 12.1 SiO x /SiC p 24.9 11.9 28.0 13.5 28.2 13.7 28.5 14.0 28.6 14.1 27.2 13.0 25.3 12.1 a-SiHi/MoO x 24.4 11.7 26.5 12.6 26.6 12.7 26.8 12.8 26.8 12.8 26.0 12.4 24.7 11.8 MoO x 24.1 11.6 25.9 12.3 26.0 12.4 26.1 12.4 26.1 12.4 25.5 12.2 24.4 11.7 PEDOTPSS 24.1 11.6 26.0 12.4 26.1 12.4 26.2 12.5 26.2 12.5 25.6 12.2 24.5 11.7 Data fromvariousgroups, referencesin J. Schmidt, R. Peibst, andR. Brendel, Sol. En. Mat. Sol. Cells 187, 39 2018. Combinations of a-Si/c-Si and poly-Si contacts give higher selectivitiesthan HIT max [] Seh Electron-selective contacts P-diffused n a-SiHi /a-SiHn th-SiO x / poly-Sin PECVD th-SiO x / poly-Sin LPCVD chem-SiO x / poly-Sin LPCVD SiO x /TiO y MgO x H o l e - s e l ec t i v e c o n ta c t s Al-p 24.5 PERC 11.7 26.8 12.8 26.9 12.8 27.1 12.9 27.1 13.0 26.3 12.5 24.9 11.9 a-SiHi/p 24.7 11.8 27.5 HIT 13.2 27.7 13.3 27.9 13.5 28.0 13.5 26.8 12.8 25.1 12.0 SiO x / poly-Sip 24.9 11.9 28.1 13.6 28.3 13.8 28.7 14.2 28.7 14.2 27.3 13.1 25.4 12.1 SiO x /SiC p 24.9 11.9 28.0 13.5 28.2 13.7 28.5 14.0 28.6 14.1 27.2 13.0 25.3 12.1 a-SiHi/MoO x 24.4 11.7 26.5 12.6 26.6 12.7 26.8 12.8 26.8 12.8 26.0 12.4 24.7 11.8 MoO x 24.1 11.6 25.9 12.3 26.0 12.4 26.1 12.4 26.1 12.4 25.5 12.2 24.4 11.7 PEDOTPSS 24.1 11.6 26.0 12.4 26.1 12.4 26.2 12.5 26.2 12.5 25.6 12.2 24.5 11.7 Combinations of selective layers Data fromvariousgroups, referencesin J. Schmidt, R. Peibst, andR. Brendel, Sol. En. Mat. Sol. Cells 187, 39 2018. Several unexplored combinations show high potential -poly-Sin Al-p -poly-Sip TiO 2 , Summary Past and presence passivation of non-contacted areas of c-Si surfaces passivation by dielectric layers such as SiO 2 , SiN x , and Al 2 O 3 Future carrier-selective layers providing excellent passivation of contacted and non-contacted areas on c-Si solar cells Carrier-selective layers must -suppress minority-carrier recombination -allow for an effective majority-carrier transport Highest selectivitiesfor both-polarity poly-Si on oxide layers Several unexplored combinations show high selectivies -poly-Sin Al-p -poly-Sip TiO 2 , Transfer into industrial cell concepts will be the next major challenge Maximize selectivity S 10 View publication statsView publication stats
点击查看更多>>
收藏
下载该资源
京ICP备10028102号-1
电信与信息服务业务许可证:京ICP证120154号
地址:北京市大兴区亦庄经济开发区经海三路
天通泰科技金融谷 C座 16层 邮编:102600