切换
资源分类
文档管理
收藏夹
最新动态
登陆
注册
关闭
返回
下载
相似
相似资源:
自然资源保护协会-中国水泥生产碳减排技术标准体系和碳排放权交易标准体系研究(执行摘要)-12页.pdf
中银国际:政策推动+盈利模式完善,迎接大储放量元年.pdf
中原证券:锂电池销量环比回落,短期谨慎关注.pdf
中泰证券:沿海动力煤价支撑仍强,焦煤需求旺季即将到来.pdf
中信建投:七月社会总用电量维持高增,水力发电量环比改善.pdf
中国上市公司碳中和信息披露质量报告(2020-2022)--西北工业大学.pdf
中国再生资源回收行业发展报告(2023).pdf
中国海外煤电投资建设风险预警研究报告——印度尼西亚国别研究-绿色和平.pdf
中国城市绿色低碳建材应用现状评估报告-中国建筑节能协会.pdf
招商证券:工具行业锂电化+智能化趋势下,中国制造从幕后走向台前.pdf
浙商证券:盘古智能-风机润滑系统行业龙头,布局液压变桨引领国产替代.pdf
粤港澳大湾区气候协同的空气质量改善战略研究报告--北京大学.pdf
引领城市空中出租车变革(英) Volocopter 2019-6.pdf
徐伟:双碳目标下的热泵发展.pdf
信达证券:电力消费增速有所收窄,重磅电改政策有望落地.pdf
中国臭氧-颗粒物和温室气体协同控制的中长期战略研究--北京大学.pdf
向人人享有环境可持续的经济和社会公正过渡-国际劳工组织.pdf
正当其时、适逢其势:2023中国基础设施REITs可持续发展行动调研报告-普华永道.pdf
浙江省产品碳足迹核算与碳标签推广研究--浙江经济信息中心.pdf
文明的温度:气候变化对西北地区生态、产业及文化遗产系统性影响评估(甘肃)--绿色和平.pdf
投资气候,投资增长-OECD.pdf
资源描述:
Out of the Lab and Into Production Perovskite Technology for Mass Production, Hangzhou, October 24 – 25 th , 2019 Compositional and Interface Engineering of Perovskite Solar Cells Anders Hagfeldt Laboratory of Photomolecular Sciences LSPM Dyenamo AB www.dyenamo.se Materials, research equipment , consultancy , etc , for solar cells and solar fuels . Journal of Materials Chemistry AEPFL’s most efficient pervoskite solar cells employ mixtures of organic cations and iodide /bromide as anion General composition FA 1-x MA x PbI 1-x Br x FA R 1 – R 4 H formamidinium MA methylammonium X 0.15 gives optimal results N. Pelletet al. , Mixed -Organic -Cation Perovskite Photovoltaics for Enhanced Solar -Light Harvesting. Angew . Chem. Int. Ed. 53, 3151-3157 2014. N. J. Jeon et al. , Compositional engineering of perovskite materials for high-performance solar cells. Nat. 517, 476- 480 2015. Simple tuning of the band gap by mixed compositions Mixing in Br increases band gap EES, Jacobsson et al., DOI 10.1039/c6ee00030d Mixing in Sn decreases band gap JMC A, Anaya et al., DOI 10.1039/c6ta04840d Opens up for multi- junction devicesDongqin Bi Certified efficiency at Newport, 21.0, Dec. 2015 hysteresis- free Voc 1.13 V Jsc 23.8 mA/cm2 FF 0.78 PEC 21.0 Our Certified Champion Cell Certified world record is 25.2 Nature Energy DOI 10.1038/NENERGY.2016.142A B Michael Saliba2016- 03-01 Michael Saliba , Triple Cations for Stability, Reproducibility and High Efficiency submitted Devices cross sectional SEM 6 Cs 0 M Cs 5 M Cs 5 M More monolithically grown crystals not seen before for MA/FA Cs 5 M M. Saliba et al., Cesium- containing Triple Cation Perovskite Solar Cells Improved Stability, Reproducibility and High Efficiency , Energy Environmental Science, 2016, DOI 10.1039/C5EE03874J 2016- 03-01 Michael Saliba , Triple Cations for Stability, Reproducibility and High Efficiency submitted ACS Energy Lett. 2017, 2, 2686 − 26932016- 09-13, Michael Saliba , Multication perovskites9 Device results Highest PCE 21.6 stabilized Highest V oc is 1.24 V band gap 1.63 eV Close to theoretical limit 1.33 V. Among lowest loss -in-potentials for any PV material 4 External Radiative Efficiency ERE, Electroluminescence Towards GaAsStability tests Stability 95 is retained after 500h of continous operation MPP at 85 o C and full illumination Gold/spiro is not a stable contact at high temperatures ACS Nano DOI 10.1021/acs.nano.6b02613 PTAA Polymer as HTM Stress test 85 o C, full illumination, MPP for 500h in N2 atmosphere11 Dr. Ji-Youn Seo Dr. Hui - Seon Kim Energy Environmental Science 2018, 11, 2985 -29921 Seo , Ji - Youn , et al. Energy Environmental Science 2018 cp/mp - TiO 2 perovskite spiro - MeOTAD Au FTO EFFICIENT PSC with Zn -TFSI 2EFFECT IN STABILITY 13 Shelf stability ambient air, storage in dark Seo, Ji -Youn, et al. Energy Environmental Science 2018Lumogen F Violet 570 by BASF Fluoropolymeric coating Stable cells under UV -light and humidity exposureFirst 3 months, Ar atmosphere. Next 3 months under air at 50 RH, In both cases under continuous UV irradiation Terrace of the Politecnico di Torino from October to December 2015 Fluoropolymeric Encapsulated Cells UV Exposure Outdoor testing UV -curable chloro -trifluoro -ethylene vinyl ether fluoropolymer binder and a dimethacrylicperfluoropolyether oligomer .What acceleratedtests are relevant for PSC Domanski et al., Energy Environ. Sci ., 2017,10, 604-613 An initial reversible decay in efficiency Domanski et al., Nature Energy, 2018, 3, 61-67. The cycled device6h on, 6h off worked on average at 96 of its initial efficiency , whilethe one with continuous illumination at 88Planar PSC Structures Flat amorphous SnO 2 ALD layer works better than flat amorphous TiO 2 ALD Layer -Band Alignment Engineering hole transporter Perovskite electron transporter J. -P. Correa Baena, L. Steier et al. Energy Environ. Sci. 2015, 810, 2928 -2934 , Stranks, NNANO 2015 TiO 2 SnO 2 X Perovskite Perovskite ESL FTO Perovskite HTL Au Simplest device structure . Fabrication temperatures 200 0 C. Flexible substrates . Implicit goal Pure FAPbI3 . ideally no MA and Br MA volatile in thin -films Br blue-shifts the band gap disproportionately not optimal for single -junction Rb , Cs, FA and I as candidates. using K is nextMA -free, Br-free perovskitesPlanar SnO 2 /PCBM,PMMA/ RbCsFA /PMMA/ spiro 25 mA/cm 2 20.4Ultra -Hydrophobic 3D/2D Fluoroarene Bilayer -Based Water - Resistant Perovskite Solar Cells with Efficiencies Exceeding 22 Yuhang Liu, SeckinAkin , Linfeng Pan, Ryusuke Uchida, NehaArora , Jovana V. 5 Milic , Alexander Hinderhofer , Frank Schreiber, Alexander R. Uhl , Shaik M. 6 Zakeeruddin , Anders Hagfeldt, M. Ibrahim Dar, Michael Grätzel. accepted Forming a 9nm thick hydrophobic 2D layer between perovskite and HTM 2D A 2 PbI 4 perovskite layer employing pentafluorophenylethyl -ammonium FEA Increased lifetime and faster hole extraction TRPL for 3D and 3D/2D perovskite More than 2-fold increase in lifetime with the 2D layer 2550 ns compared to 950 ns TRPL with HTM spiro Faster holeextraction with 2D layerPerformance Best efficiency with 3D/2D at 22.1 Non -encapsulated cells. Continuous illumination, MPP, 40 humidityFlash Infrared Annealing FIRA 0 10 20 30 40 50 60 96 98 100 Hybrid/Spiro Hybrid/NiO x Inorganic/NiO x Power output Time min 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -5 0 5 10 15 20 25 J mA/cm 2 V V Hybrid/Spiro Hybrid/NiO x Inorganic/NiO x 10 ° C N O 2 Gas in Water in Water out Gas in Cold water flow Conductive glass SnO 2 Perovskite absorber NiO x SnO 2 F IR LAMP Jsc mA/cm 2 Voc mV FF 22.8 1100 73 18.4 910 66 7.8 1200 60 PCE 18.3 PCE 11.1 PCE 5.6 a b c Outlook R2R fabrication Schematic cross section of the FIRA setup Low temperature, Annealing time ∼ seconds 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 10 20 J mA/cm 2 V V FIRA Antisolvent J sc mA/cm 2 V oc V FF PCE FIRA 22.6 1.11 76 19.0 Ant. 22.7 1.15 74 19.2 21 22 23 J mA/cm 2 0 100 200 300 15 18 21 PCE Time s a c b d FIRA Antisolvent Scan rate 10 mV/s Active area 0.16 cm 2 Spiro-OMeTAD Spiro-OMeTAD FTO FTO TiO 2 TiO 2 Perovskite Perovskite Regular architecture/TiO 2 meso Planar architectureThanks Michael Grätzel LSPM Anand Agarwalla Fatemeh Ansarii Saeid Asgary Brian Carlsen Bitao Dong Natalie Flores Diaz Firouzeh Ebadi Garjan Natalie Flores Diaz Mozhdeh Forouzandeh Hui-Seon Kim Kazuteru Nonomura Haizhou Lu Linfeng Pan LPI Team Faranak Sadegh Yasemin Saygili Wolfgang Tress Nick Vlachopoulos Zaiwei Wang Zishuai Wang Bowen Yang Shaik Zakeeruddin Jiahuan Zhang Special thanks Antonio Abate Juan -Pablo Correa-Baena Michael Saliba
点击查看更多>>
收藏
下载该资源
京ICP备10028102号-1
电信与信息服务业务许可证:京ICP证120154号
地址:北京市大兴区亦庄经济开发区经海三路
天通泰科技金融谷 C座 16层 邮编:102600