切换
资源分类
文档管理
收藏夹
最新动态
登陆
注册
关闭
返回
下载
相似
相似资源:
自然资源保护协会-中国水泥生产碳减排技术标准体系和碳排放权交易标准体系研究(执行摘要)-12页.pdf
中银国际:政策推动+盈利模式完善,迎接大储放量元年.pdf
中原证券:锂电池销量环比回落,短期谨慎关注.pdf
中泰证券:沿海动力煤价支撑仍强,焦煤需求旺季即将到来.pdf
中信建投:七月社会总用电量维持高增,水力发电量环比改善.pdf
中国上市公司碳中和信息披露质量报告(2020-2022)--西北工业大学.pdf
中国再生资源回收行业发展报告(2023).pdf
中国海外煤电投资建设风险预警研究报告——印度尼西亚国别研究-绿色和平.pdf
中国城市绿色低碳建材应用现状评估报告-中国建筑节能协会.pdf
招商证券:工具行业锂电化+智能化趋势下,中国制造从幕后走向台前.pdf
浙商证券:盘古智能-风机润滑系统行业龙头,布局液压变桨引领国产替代.pdf
粤港澳大湾区气候协同的空气质量改善战略研究报告--北京大学.pdf
引领城市空中出租车变革(英) Volocopter 2019-6.pdf
徐伟:双碳目标下的热泵发展.pdf
信达证券:电力消费增速有所收窄,重磅电改政策有望落地.pdf
中国臭氧-颗粒物和温室气体协同控制的中长期战略研究--北京大学.pdf
向人人享有环境可持续的经济和社会公正过渡-国际劳工组织.pdf
正当其时、适逢其势:2023中国基础设施REITs可持续发展行动调研报告-普华永道.pdf
浙江省产品碳足迹核算与碳标签推广研究--浙江经济信息中心.pdf
文明的温度:气候变化对西北地区生态、产业及文化遗产系统性影响评估(甘肃)--绿色和平.pdf
投资气候,投资增长-OECD.pdf
资源描述:
PERC production yield improvement using I-V data and a Los Component approach 13 March 2019 Gordon Deans, CEO Aurora Solar Technolgies © 2019 Aurora Solar Technolgies Aurora Solar Technologies © 2019 Aurora Solar Technolgies 2 Mision –MEASURE, VISUALIZE, CONTROL Deliver superior results to the PV industry through measurement, understanding and control of critical cel manufacturing proceses. Solutions for Real-time measurement of critical-to-quality PV cel properties Analysis of the causal conections betwen proceses and I-V results to maximize yield and throughput Visualization of proces equipment behaviour for optimal control and management Proven with SMSL and high-efficiency solar cel manufacturers in China, Taiwan, Korea, and S.E. Asia Cel fabrication proces analysis and visualization for instant verification, diagnosis and control Real-time emitter, BSF, TCO measurement in c-Si cel production Previously at PV CelTech “Inline mid-stream wafer measurements to reveal process variation afecting PV cell performance and reliability” Introduction of a new method for using material and cell fabrication proces properties in proces analysi and control Benefits from using the method “Enhancing quality control in PV cel production by implementing Industry 4.0 design features” Further theory and applications of the above method to tie end- of-line results to cell fabrication process properties 2017 2018 3 © 2019 Aurora Solar Technolgies Today “Inline mid-stream wafer measurements to reveal process variation afecting PV cell performance and reliability” Introduction of a new method for using material and cell fabrication proces properties in proces analysi and control Benefits from using the method “Enhancing quality control in PV cel production by implementing Industry 4.0 design features” Further theory and applications of the above method to tie end- of-line results to cell fabrication process properties 2017 2018 Realization and production line examples © 2019 Aurora Solar Technolgies 4 Basis –loss analysis approach IEEEJOURNALOFPHOTOVOLTAICS,VOL.5,NO.2,MARCH2015 619 ASystematicLossAnalysisMethodfor Rear-PassivatedSiliconSolarCells JohnsonWong,ShubhamDuttagupta,RolfStangl,BramHoex,andArminG.Aberle AbstractBycombiningcommonlyavailablesolarcellcharac- terizationmethodswitheasy-to-prepare teststructuresandpar- tiallyprocessedrear-passivatedsolarcellsfromtheproduction line,weshowthatvariouscelllossmechanismscanbe quanti- fiedinexquisitedetailtogenerateprocess-relateddiagnostics.An examplemonocrystallinesiliconlocalizedbacksurfacefieldso- larcelltypeis examinedusinga systematicroutinethatbreaks downthefactorslimitingopen-circuitvoltage,short-circuitcur- rent,andfillfactorFFtoidentifythecellstructure’sheadroomfor improvement. IndexTermsCharacterization,metrology,SiPVmodeling. I. INTRODUCTION L OCALIZEDbacksurfacefieldLBSFsolarcells,bifacial cells,andpassivatedemitterreartotallydiffusedsilicon wafersolarcelltypesrelyonpassivationlayersonboththefront andrearsurfacesofthedevicetomoreeffectivelyreduceminor- itycarrierrecombinationattherearsurface,comparedwiththe omnipresentaluminumbacksurfacefieldsiliconwafersolarcell [1],[2].Inthesecelltypes,thepassivationstructureiscompleted beforethemetallizationstep,makingitsensibletotrackthecell passivationqualityatthevariousstagesafterapplicationofthe passivationcoatings.Followingalineofpredecessorsolarcell lossanalysismethods[3],[4],weoutlineanopen-circuitvoltage V oc lossanalysisroutinethatenablestheextractionofthevar- iouscomponentsofcarrierrecombinationbythemeasurements ofexcesscarrierdensityineasy-to-prepareteststructuresand partiallyprocessedrear-passivatedsolarcellsfromtheproduc- tionline,usingcommonlyavailablecharacterizationmethods suchasradio-frequencyRFphotoconductance[5],photolu- minescencePLimaging[6],andshort-circuitcurrentdensity versusopen-circuitvoltageJ sc −V oc measurements[7].Com- binedwiththemoreestablishedmethodsofshort-circuitcurrent I sc andfillfactorFFlossanalysisonthefinishedcel,a comprehensivepictureofthefactorslimitingthecellefficiency canbeobtained.Thesetofmethodsdescribedinthispaperis relatedtoapreviouslypublishedsystemthatquantifiedseven powerlossmechanismsinasiliconwafersolarcellfrontmetal Manuscriptreceived September15,2014;revisedDecember2, 2014;ac- ceptedDecember8,2014.DateofpublicationJanuary16,2015;dateofcurrent versionFebruary18,2015.TheSolarEnergyResearchInstituteofSingapore SERISisaresearchinstituteattheNationalUniversityofSingaporeNUS. SERISissponsoredbyNUSandSingapore’s NationalResearchFoundation throughtheSingaporeEconomicDevelopmentBoard. TheauthorsarewiththeSolarEnergyResearchInstituteofSingapore,Sin- gapore117574e-mailJohnson.wongnus.edu.sg;shubham.duttaguptanus. edu.sg;rolf.stanglnus.edu.sg;Bram.Hoexnus.edu.sg;armin.aberlenus. edu.sg. Colorversionsofoneormoreofthefiguresinthispaperareavailableonline at http//ieeexplore.ieee.org. DigitalObjectIdentifier10.1109/JPHOTOV.2014.2388071 shading,frontsurfacereflectanceintheactivecellarea,front surfaceescapeoflight,seriesresistance,shuntconductance, nonperfectactive-areainternalquantumefficiencyIQE,and theforward-biascurrentatthe1-sunmaximumpowerpoint[3]. Themaindifferencesinthisstudyarethat1powerlossisre- placedbythequantificationoflossfactorsinthethree1-sun current–voltageparametersV oc , I sc ,andFF;2theV oc loss mechanismsarequantifiedintermsofthesaturationcurrent densitiesoriginatingfromthedifferentcomponentsofthesolar cell;and3thenonperfectactive-areaIQEisfurtherbroken downintoparasiticabsorptionandcollectionlosses,suchthat thecurrentlossesofopticaloriginparasiticabsorptioninthe rearreflectorcanbeclearlydiscernedfromthosearisingfrom recombinatione.g.,highrecombinationattherearsurface. Themoredetailedapproachinthisstudybetterenablesthe assessmentoftheimpactofdifferentprocessingstepsandlay- ers/structuresinthecellonitsperformanceandprovidesthe necessaryinputsforfurtheranalysisandpredictionsbysimula- tionmodels. II. EXPERIMENTALDETAILS Weillustratethelossanalysismethodsforascreen-printedAl localizedbacksurfacefieldAl-LBSFmonocrystallinesilicon wafersolarcell,buttheapproachisalsoapplicabletoothersolar celltypeswithrearpassivation[2],[8].Fig.1showsthesample andmeasurementplan,illustratingthestructureofthesamples indetail.Thefinishedcellswerefabricatedusing156-mmpseu- dosquarep-typemonocrystallineCzsiliconwafers.TableIlists therelevantmaterial,structural,andmeasured1-suncurrent– voltageI–Vparameters.TheV oc lossanalysisroutinerequires onesymmetricalpassivatedemitterstructureAandfourpar- tiallyprocessedsolarcellsB–E.Allfivesampleshavegone throughthefinalmetallizationcontactfiringstepintheproduc- tionlineinamultizoneconvectionfurnacetoensurethatthey experience similar thermal history as a completely processed cellandarethusrepresentativeofthedifferentstructuresinthe finaldevice.Thedegreeofequivalenceinthermalhistoryde- pendsontherelativeamountsofconvectiveandradiativeheat transferinthefiringfurnace.SamplesAandB,withoutfull- arearearmetallayers,wouldabsorbsignificantlymoreinfrared radiationincidentontherearsidesthanwouldsamplesCand E.Therefore,thesiliconnitrideSiN x layersinsampleAis probablyfiredatahighertemperaturethantheoneinthefully metallizedcell,leadingtoanuncertainlyintheemittersatu- rationcurrentdensityJ oe inthenextsection.Althoughthe dielectriclayersinsampleBshouldhave alsoexperienceda differentfiringtemperaturethantheonesinsamplesC–E,this isacceptablebecauseoneneedsnotassumethatthedielectric 2156-3381©2015IEEE.Personaluseispermitted,butrepublication/redistributionrequiresIEEEpermission. Seehttp//www.ieee.org/publicationsstandards/publications/rights/index.htmlformoreinformation. 622 IEEEJOURNALOFPHOTOVOLTAICS,VOL.5,NO.2,MARCH2015 TABLE II SATURATION CURRENTDENSITIESOFVARIOUSRECOMBINATIONCURRENTSOURCESUNDERTHETWO-DIODEMODEL SampleCfirstdiode J01,C Suns–PL 210fA/cm 2 SampleCseconddiode J02,C Suns–PL 14nA/cm 2 SampleDfirstdiode J01,D Suns–PL 290fA/cm 2 SampleDseconddiode J02,D Suns–PL 17nA/cm 2 SampleEfirstdiode J01,E Jsc−Voc 440fA/cm 2 SampleEseconddiode J02,E Jsc−Voc 22nA/cm 2 Passivatedemitterfirstdiode J0e Kane–Swansonmethod 93fA/cm 2 Bulkandrearpassivationfirstdiode J01,base,pass J01,C −J0e 117fA/cm 2 Rearcontactsfirstdiode J01,rear,met J01,D −J01,C 80fA/cm 2 Rearcontactsseconddiode J02,rear,met J02,D −J02,C 3nA/cm 2 Cellbasefirstdiode J01,base,cell J01,base,pass J01,rear,met 197fA/cm 2 Junctionseconddiode J02,junction J02,C 14nA/cm 2 Firstdiodeduetofrontmetallization J01,front,met J01,E −J01,D 150fA/cm 2 Seconddiodeduetofrontmetallization J02,front,met J02,E −J02,D 5nA/cm 2 Puttingittogether, Fig.4comparestheSuns–PL[11]curves ofsamplesC–E,aswellastheactualprobedV oc at different lightintensitiesJ sc −V oc ofthefinishedcellsampleE. TheSuns–PLandJ sc −V oc curves canbe analyzedusing thetwo-diodemodelforsolarcells.Underthismodel,inopen circuit,wehave J L J 01 bracketleftbigg exp parenleftbigg qV kT parenrightbigg −1 bracketrightbigg J 02 bracketleftbigg exp parenleftbigg qV 2kT parenrightbigg −1 bracketrightbigg 3 whereJ L isthelight-inducedcurrentdensity, andJ 01 andJ 02 arethefirstandseconddiodesaturationrecombinationcurrent densities,respectively.Notethatwehaveomittedanyshuntcur- renttermin3,thusassumingthattheshuntresistanceislarge enoughtocausenegligibleeffectsinallsamples.Basedoncell measurements,J L J sc 38.43mA/cm 2 forsampleE. For samplesCandD,withoutthe3metalbusbarand4finger shading,J L 38.43/1−f metal 41.32mA/cm 2 .TableII liststheJ 01 andJ 02 valuesof samplesC–Eat 25 °C,whichare denotedbysubscriptscorrespondingtothesample.Italsolists, ona basisthatis normalizedtothewaferarea,thepassivated emitterJ 0e asmeasuredfromsampleAandcalculatestheJ 01 originatingfromthebulkandrearpassivationJ 01,base,pass , localizedrearpointcontactsJ 01,rear,met ,frontmetallization J 01,front,met ,andJ 02 originatingfromthejunctionunderthe passivatedemitterJ 02,junction ,andJ 02 duetofrontmetalliza- tionJ 02,front,met .ThesumofJ 01,base,pass andJ 01,rear,met is denotedJ 01,base,cell ,whichisthebasesaturationcurrentdenity ofthefinishedcell. At1-sunillumination,theimpactoftheJ 01 andJ 02 sources onthecellV oc canbeassessedbytherecombinationcurrent densitiesJ R they generate.Namely, J R J 01 expqV oc /kT andJ R J 02 expqV oc /2kTforfirstandseconddiodesources, respectively. TheseJ R ’s can then be divided by expqV oc /kT toderiveequivalentJ 01 values under 1-sunopen-circuit condi- tions,whicharesummarizedasapiechartinFig.5.Thechart givesa breakdownofthedifferentrecombinationsourcesona commonbasis. ThepiechartinFig.5givesacomprehensiveoverviewofthe recombinationlossmechanismsandoffersa basisofcompari- sontostate-of-the-artLBSFsolarcells.Theplasma-enhanced chemicalvapor depositionPECVDsiliconnitrideSiN x Fig.5. EquivalentfirstdiodesaturationcurrentdensityJ 01 valuesinfA/cm 2 atV oc arisingfromdifferentpartsoftheLBSFsolarcell. passivated emitteris excellent,having a J 0e of less than 100fA/cm 2 [19],[20].On the otherhand,the combination ofbulkrecombinationandrearrecombinationatthepassivated rear, consistingof a PECVDaluminumoxideandsiliconni- trideAlO x /SiN x stack,contributesabout117fA/cm 2 ,whichis manytimeshigherthantheJ 01,base,pass reportedforLBSFc-Si cellswithhighV oc andrearpassivationsurfacerecombination velocity of less than 10 cm/s [21]–[23]. The front-grid-related recombinationisalsounusuallylarge,pullingthejunctionvolt- agefrom655mVinsampleDto642.5mVinsampleE.There arethreeeffectsintheintroductionofthefrontgridcontributing tothisvoltagedrop1metalrecombinationbymetalcontact- inganderosionoftheemitter;2thegridconnectingthevast areaofthecelltolocalizedhigh-recombinationregionssuchas thewaferedgesviahighlyconductive paths;and3reduction ofJ sc bythemetalshadingfractionf metal 7in thiscase. Ofthesefactors,shadingcanonlylowertheV oc by roughly kTln1−f metal ,i.e.,by∼2mV.Asforedgerecombination, duetothecellplane’sfiniteconductance,theimpactonthecell V oc wouldbemorepronouncedatlowlightintensitiescompared withat1sun.Thus,edgerecombinationandotherlocalizedcur- rentsinks,regardlessofwhethertheyaren1orn2diodes innature,willinevitablycausetheJ sc −V oc curve toexhibit ahighidealityfactoratlowlightintensity.Onecan,therefore, relyontheJ sc −V oc characteristicsinFig.4toderiveanupper 624 IEEEJOURNALOFPHOTOVOLTAICS,VOL.5,NO.2,MARCH2015 Fig.7. Short-circuitcurrentdensityJ sc lossmechanismsandtheirmagni- tudesinmA/cm 2 . uponmultiplicationwiththeelementarychargeq,thecontribu- tionsascurrentdensities,asdisplayedinFig.7 asa piechart. Thetotallosscurrentdensityof7.94mA/cm 2 ,whenaddedt the cellJ sc of38.43mA/cm 2 ,yields46.37mA/cm 2 ,whichisthe maximumgenerationcurrentdensityavailablefromthephoton fluxintheAM1.5Gspectrumbetween300and1200nm. Thequantitative treatmentof currentlossesenablesoneto comparethecellunderstudywiththestateoftheart.Thecur- rentrecordLBSFcell,forexample,hasacurrentdensityJ sc of 39.8mA/cm 2 [19].Oneobviousdifferenceis inthefrontgrid metallizationfraction,being4forthestateoftheartcellcom- paredwith7forthecellofthisstudy. Thisdifferencealone contributesto346.37mA/cm 2 1.39mA/cm 2 inlostcur- rentdensity. Notwithstandingthe metalshading,in the non- shadedareas,thecurrentdensityisreportedtobe41.3mA/cm 2 forthestate-of-the-artLBSFcell[19],whichispracticallyiden- ticaltothenonshadedareacurrentdensitycalculatedforthecell in thisstudy. In reality, it is difficultto quantifyveryfinedif- ferencesincellJ sc ,especiallyfortwocellsthatweremeasured underdifferentsolarsimulators.It is,therefore,worthwhileto delve a littledeeperintotheJ 01,base,cell andthequantumeffi- ciencycurvetoestimatetheimpactofdifferentrearpassivation qualityonthebasecollectioncurrentloss.AccordingtoBasore [27],J 01,base,cell andtheeffectivebasediffusionlengthL eff are relatedvia J 01,base,cell qn 2 i D N A L eff 4 where D∼29.2 cm 2 /s is the minority carrier diffusion coefficient at N A 8.810 15 cm −3 .UsingJ 01,base,cell 197fA/cm 2 resultsinL eff 2mmforthecellofthisstudy. This effective diffusionlengthvalue is consistentwith the measuredIQEEQE full /[1−f metal 1−R active ]93 at 1000nm,whencheckedagainstPC1D[30]simulationsus- ingtheappropriateinternalreflectanceparametersandeffective diffusionlength.Incomparison,thestate-of-the-artLBSFcell hasconsistentlyIQE∼96at1000nm[19],[21]–[23],which impliesroughly0.2mA/cm 2 higherJ sc fromreductioninbase collectionlossaccordingtoPC1D.Asalowerbound,usingbulk diffusionlengthand rearsurface velocitiesreportedby Gatz Fig.8. FillfactorFFlossmechanismsandtheirmagnitudesinpercent. et al.fora Ga-dopedlight-stabilizedLBSFcell[23],thesim- ulationshowsthatthereisatleasta differenceof0.1mA/cm 2 . Optically,itisevidentthatthelight-trappingabilityofthestate- of-the-artcellisnotmuchdifferentfromthecellofthisstudy, asbothhavesimilarIQEvaluesandreflectanceat1100nmand beyond.ThereisalsonotasignificantdifferenceintheIQE reflectancein the300–500-nmrange.Nevertheless,any sma
点击查看更多>>
收藏
下载该资源
京ICP备10028102号-1
电信与信息服务业务许可证:京ICP证120154号
地址:北京市大兴区亦庄经济开发区经海三路
天通泰科技金融谷 C座 16层 邮编:102600