返回 相似
资源描述:
Optimization of CuIn,GaSe,S2 absorbers by elemental selenium-sulfur annealing of sputtered precursors on 30x30 cm2 Maarten van der Vleuten, Mirjam Theelen, Marcel Simor, Rémi Aninat, Henk Steijvers, Robert Meertens, Karine van der Werf, Hans Linden, Dong Zhang, Hero ‘t Mannetje SNEC, June 4th, 2019 Introducing Solliance Solliance building Genk ForschungsZentrum Jülich Solliance - FZJ EnergyVille Genk Solliance - imec GermanySolliance Building Eindhoven High Tech Campus Eindhoven Solliance - TNO Solliance Cross-border RD collaboration on thin film PV Netherlands - Belgium - Germany Solliance research partners Partners in research and industry SNEC 2019 Solliance industry partners Materials Equipment suppliers PV Manufacturers End users part of Solliance facility Netherlands SNEC 2019 ▪ Semi-industrial RD line CIGS and Perovskites ▪ Co-operation with world’s leading CIGS companies for process development ▪ 30x30 cm2 CIGS started 2014 Champion Cells various technologies ▪ Efficiency Perovskites CIGS in between mc-Si and c-Si ▪ Maturity MRL Perovskites 12 GWp will be installed 8.35 GWp CIGS CNBM-Avancis, Sunflare, Hanergy, CHN energy-Manz, 4 GWp CdTe Special absorber formation processStand rd sputt red precursorIn CuGa Our baseline CIGS Stack build-up SNEC 2019 CuIn,GaSe,S2 CdS i-ZnO AlZnO Molybdenum Soda lime glass Standard sputtered TCO Standard glass Standard wet-chemical buffer Standard sputtered back-contact Selenisation platform SNEC 2019 Elemental Se instead of H2Se low OPEX Non-vacuum, in-line processing low CAPEX Unique freedom of process Full control over Se and S vapor supply during each process step Mass production systemRD system similar to system at Solliance CIGS Bandgap SNEC 2019 Source Huang et al.TSMC 2016 ▪ Optimum bandgap for CIGS 1.10 eV - 1.25 eV range ▪ Bandgap of pure CuInSe2 1.00 eV, Ga and S are needed for raising bandgap ▪ Good CIGS material has a double bandgap grading with ▪ Increased bandgap at surface by higher S content ▪ Increased bandgap at back with higher Ga content CIGS overview NREL 2012 23 world record Absorber formation 1. Well known problem sequential CIGS Phase separated CuInSe2/CuGaSe2 cell with 1.00 eV minimum bandgap 2. With high thermal budget, move Gallium to the front for higher minimum bandgap of 1.10 eV 3. Add sulfur to the front for targeted minimum bandgap of 1.15 eV and a double bandgap grading 1 Voc max 550 mV 2016 2 Voc max 610 mV 2017 3 Voc max 700 mV 2018 SNEC 2019 Absorber formation process Mixing of metals Selenisation and Gallium migration* Surface sulfurisation Low SeNo Se High Se G la s s M o ly b d e n u m C u G a In SNEC 2019 * Gallium migration only with specific conditions Gallium migration to surface SNEC 2019 M ix in g o f m e ta ls Se le n is a ti o n a n d g a lliu m tr a n s p o r t Su r fa c e s u lfu r is a ti o n Lo w SeN o Se H i g h Se ▪ Medium Thermal budget ▪ A bit of Gallium at surface ▪ Min. bandgap 1.08 eV Ga ▪ High Thermal budget ▪ Plenty Gallium at surface ▪ Min. bandgap 1.15 eV Ga GD-OES analysis by HZB-PVCOMB Berlin ▪ Low Thermal budget ▪ No Gallium at surface ▪ Min. bandgap 1.00 eV Ga surface Varying thermal budget Full bandgap control SNEC 2019 0 0 . 2 0 . 4 0 . 6 0 . 8 1 3 0 0 5 0 0 7 0 0 9 0 0 1 1 0 0 1 3 0 0 E Q E W a velen gth / n m l o w t h e r ma l b u d g e t , No S l o w t h e r ma l b u d g e t , me d i u m S me d i u m t h e r ma l b u d g e t , n o S h e a v y t h e r ma l b u d g e t , n o S h e a v y t h e r ma l b u d g e t , me d i u m S h e a v y t h e r ma l b u d g e t , h e a v y S ▪ Increasing bandgap with higher thermal budget and heavier Sulphurization 1.00 eV → 1.17 eV Increasing bandgap Internal records SNEC 2019 ▪ Highest Voc 701 mV ▪ All steps industrial processing on 30x30 cm2 format Electrodeposited precursor 2014-2017 Sputtered precursor since Q4 2017 Efficiency 15.4 16.4 Voc 632 mV 645 mV Jsc 34.8 mA/cm2 35.4 mA/cm2 FF 70 72 30 cm 30 cm CIGS-Perovskite Tandem SNEC 2019 ▪ May 2019 Fully in-house sequential CIGS-Perovskite tandem cell 23.8 400 600 800 1000 1200 1400 0.0 0.2 0.4 0.6 0.8 1.0 1.2 EQE Wavelen gth nm Si ng le CIGS 35 .0 m Ac m -2 Fi lt ere d CIGS 15 .2 m Ac m -2 PSC 21 .0 m Ac m -2 4T 3 6.2 mA c m -2 CIGSPerovskite ▪ Jan 2019 Flexible tandem with Solliance Perovskite on top of Miasolé Hanergy CIGS cell 21.5 Conclusions SNEC 2019 Outlook ❖ Improvement buffer, TCO and alkali addition ❖ Transfer process to CIGS on flexible substrates ❖ Industrial low-cost CIGS absorber formation ❖ Unique bandgap control by Gallium and Sulphur depth control ❖ Voc values up to 700 mV For more info, contact us via Wechat SNEC 2019 ▪ Via e-mail ronnielibrainport.site Chinese Hans.lindensolliance.eu English Maarten.vandervleutensolliance.eu English For more Solliance work, please visit the Scientific conference session 4 Wednesday 1045 – 1215 ▪ 27 efficient 4-terminal tandem with highly transparent perovskite top cell and back-contacted Si heterojunction bottom cell Dong Zhang ▪ Back-end interconnection for CIGS modules Veronique Gevaerts, presented by Maarten van der Vleuten Welcome for cooperation
点击查看更多>>

京ICP备10028102号-1
电信与信息服务业务许可证:京ICP证120154号

地址:北京市大兴区亦庄经济开发区经海三路
天通泰科技金融谷 C座 16层 邮编:102600