切换
资源分类
文档管理
收藏夹
最新动态
登陆
注册
关闭
返回
下载
相似
相似资源:
自然资源保护协会-中国水泥生产碳减排技术标准体系和碳排放权交易标准体系研究(执行摘要)-12页.pdf
中银国际:政策推动+盈利模式完善,迎接大储放量元年.pdf
中原证券:锂电池销量环比回落,短期谨慎关注.pdf
中泰证券:沿海动力煤价支撑仍强,焦煤需求旺季即将到来.pdf
中信建投:七月社会总用电量维持高增,水力发电量环比改善.pdf
中国上市公司碳中和信息披露质量报告(2020-2022)--西北工业大学.pdf
中国再生资源回收行业发展报告(2023).pdf
中国海外煤电投资建设风险预警研究报告——印度尼西亚国别研究-绿色和平.pdf
中国城市绿色低碳建材应用现状评估报告-中国建筑节能协会.pdf
招商证券:工具行业锂电化+智能化趋势下,中国制造从幕后走向台前.pdf
浙商证券:盘古智能-风机润滑系统行业龙头,布局液压变桨引领国产替代.pdf
粤港澳大湾区气候协同的空气质量改善战略研究报告--北京大学.pdf
引领城市空中出租车变革(英) Volocopter 2019-6.pdf
徐伟:双碳目标下的热泵发展.pdf
信达证券:电力消费增速有所收窄,重磅电改政策有望落地.pdf
中国臭氧-颗粒物和温室气体协同控制的中长期战略研究--北京大学.pdf
向人人享有环境可持续的经济和社会公正过渡-国际劳工组织.pdf
正当其时、适逢其势:2023中国基础设施REITs可持续发展行动调研报告-普华永道.pdf
浙江省产品碳足迹核算与碳标签推广研究--浙江经济信息中心.pdf
文明的温度:气候变化对西北地区生态、产业及文化遗产系统性影响评估(甘肃)--绿色和平.pdf
投资气候,投资增长-OECD.pdf
资源描述:
Optimization of CuIn,GaSe,S2 absorbers by elemental selenium-sulfur annealing of sputtered precursors on 30x30 cm2 Maarten van der Vleuten, Mirjam Theelen, Marcel Simor, Rémi Aninat, Henk Steijvers, Robert Meertens, Karine van der Werf, Hans Linden, Dong Zhang, Hero ‘t Mannetje SNEC, June 4th, 2019 Introducing Solliance Solliance building Genk ForschungsZentrum Jülich Solliance - FZJ EnergyVille Genk Solliance - imec GermanySolliance Building Eindhoven High Tech Campus Eindhoven Solliance - TNO Solliance Cross-border RD collaboration on thin film PV Netherlands - Belgium - Germany Solliance research partners Partners in research and industry SNEC 2019 Solliance industry partners Materials Equipment suppliers PV Manufacturers End users part of Solliance facility Netherlands SNEC 2019 ▪ Semi-industrial RD line CIGS and Perovskites ▪ Co-operation with world’s leading CIGS companies for process development ▪ 30x30 cm2 CIGS started 2014 Champion Cells various technologies ▪ Efficiency Perovskites CIGS in between mc-Si and c-Si ▪ Maturity MRL Perovskites 12 GWp will be installed 8.35 GWp CIGS CNBM-Avancis, Sunflare, Hanergy, CHN energy-Manz, 4 GWp CdTe Special absorber formation processStand rd sputt red precursorIn CuGa Our baseline CIGS Stack build-up SNEC 2019 CuIn,GaSe,S2 CdS i-ZnO AlZnO Molybdenum Soda lime glass Standard sputtered TCO Standard glass Standard wet-chemical buffer Standard sputtered back-contact Selenisation platform SNEC 2019 Elemental Se instead of H2Se low OPEX Non-vacuum, in-line processing low CAPEX Unique freedom of process Full control over Se and S vapor supply during each process step Mass production systemRD system similar to system at Solliance CIGS Bandgap SNEC 2019 Source Huang et al.TSMC 2016 ▪ Optimum bandgap for CIGS 1.10 eV - 1.25 eV range ▪ Bandgap of pure CuInSe2 1.00 eV, Ga and S are needed for raising bandgap ▪ Good CIGS material has a double bandgap grading with ▪ Increased bandgap at surface by higher S content ▪ Increased bandgap at back with higher Ga content CIGS overview NREL 2012 23 world record Absorber formation 1. Well known problem sequential CIGS Phase separated CuInSe2/CuGaSe2 cell with 1.00 eV minimum bandgap 2. With high thermal budget, move Gallium to the front for higher minimum bandgap of 1.10 eV 3. Add sulfur to the front for targeted minimum bandgap of 1.15 eV and a double bandgap grading 1 Voc max 550 mV 2016 2 Voc max 610 mV 2017 3 Voc max 700 mV 2018 SNEC 2019 Absorber formation process Mixing of metals Selenisation and Gallium migration* Surface sulfurisation Low SeNo Se High Se G la s s M o ly b d e n u m C u G a In SNEC 2019 * Gallium migration only with specific conditions Gallium migration to surface SNEC 2019 M ix in g o f m e ta ls Se le n is a ti o n a n d g a lliu m tr a n s p o r t Su r fa c e s u lfu r is a ti o n Lo w SeN o Se H i g h Se ▪ Medium Thermal budget ▪ A bit of Gallium at surface ▪ Min. bandgap 1.08 eV Ga ▪ High Thermal budget ▪ Plenty Gallium at surface ▪ Min. bandgap 1.15 eV Ga GD-OES analysis by HZB-PVCOMB Berlin ▪ Low Thermal budget ▪ No Gallium at surface ▪ Min. bandgap 1.00 eV Ga surface Varying thermal budget Full bandgap control SNEC 2019 0 0 . 2 0 . 4 0 . 6 0 . 8 1 3 0 0 5 0 0 7 0 0 9 0 0 1 1 0 0 1 3 0 0 E Q E W a velen gth / n m l o w t h e r ma l b u d g e t , No S l o w t h e r ma l b u d g e t , me d i u m S me d i u m t h e r ma l b u d g e t , n o S h e a v y t h e r ma l b u d g e t , n o S h e a v y t h e r ma l b u d g e t , me d i u m S h e a v y t h e r ma l b u d g e t , h e a v y S ▪ Increasing bandgap with higher thermal budget and heavier Sulphurization 1.00 eV → 1.17 eV Increasing bandgap Internal records SNEC 2019 ▪ Highest Voc 701 mV ▪ All steps industrial processing on 30x30 cm2 format Electrodeposited precursor 2014-2017 Sputtered precursor since Q4 2017 Efficiency 15.4 16.4 Voc 632 mV 645 mV Jsc 34.8 mA/cm2 35.4 mA/cm2 FF 70 72 30 cm 30 cm CIGS-Perovskite Tandem SNEC 2019 ▪ May 2019 Fully in-house sequential CIGS-Perovskite tandem cell 23.8 400 600 800 1000 1200 1400 0.0 0.2 0.4 0.6 0.8 1.0 1.2 EQE Wavelen gth nm Si ng le CIGS 35 .0 m Ac m -2 Fi lt ere d CIGS 15 .2 m Ac m -2 PSC 21 .0 m Ac m -2 4T 3 6.2 mA c m -2 CIGSPerovskite ▪ Jan 2019 Flexible tandem with Solliance Perovskite on top of Miasolé Hanergy CIGS cell 21.5 Conclusions SNEC 2019 Outlook ❖ Improvement buffer, TCO and alkali addition ❖ Transfer process to CIGS on flexible substrates ❖ Industrial low-cost CIGS absorber formation ❖ Unique bandgap control by Gallium and Sulphur depth control ❖ Voc values up to 700 mV For more info, contact us via Wechat SNEC 2019 ▪ Via e-mail ronnielibrainport.site Chinese Hans.lindensolliance.eu English Maarten.vandervleutensolliance.eu English For more Solliance work, please visit the Scientific conference session 4 Wednesday 1045 – 1215 ▪ 27 efficient 4-terminal tandem with highly transparent perovskite top cell and back-contacted Si heterojunction bottom cell Dong Zhang ▪ Back-end interconnection for CIGS modules Veronique Gevaerts, presented by Maarten van der Vleuten Welcome for cooperation
点击查看更多>>
收藏
下载该资源
京ICP备10028102号-1
电信与信息服务业务许可证:京ICP证120154号
地址:北京市大兴区亦庄经济开发区经海三路
天通泰科技金融谷 C座 16层 邮编:102600