切换
资源分类
文档管理
收藏夹
最新动态
登陆
注册
关闭
返回
下载
相似
相似资源:
自然资源保护协会-中国水泥生产碳减排技术标准体系和碳排放权交易标准体系研究(执行摘要)-12页.pdf
中银国际:政策推动+盈利模式完善,迎接大储放量元年.pdf
中原证券:锂电池销量环比回落,短期谨慎关注.pdf
中泰证券:沿海动力煤价支撑仍强,焦煤需求旺季即将到来.pdf
中信建投:七月社会总用电量维持高增,水力发电量环比改善.pdf
中国上市公司碳中和信息披露质量报告(2020-2022)--西北工业大学.pdf
中国再生资源回收行业发展报告(2023).pdf
中国海外煤电投资建设风险预警研究报告——印度尼西亚国别研究-绿色和平.pdf
中国城市绿色低碳建材应用现状评估报告-中国建筑节能协会.pdf
招商证券:工具行业锂电化+智能化趋势下,中国制造从幕后走向台前.pdf
浙商证券:盘古智能-风机润滑系统行业龙头,布局液压变桨引领国产替代.pdf
粤港澳大湾区气候协同的空气质量改善战略研究报告--北京大学.pdf
引领城市空中出租车变革(英) Volocopter 2019-6.pdf
徐伟:双碳目标下的热泵发展.pdf
信达证券:电力消费增速有所收窄,重磅电改政策有望落地.pdf
中国臭氧-颗粒物和温室气体协同控制的中长期战略研究--北京大学.pdf
向人人享有环境可持续的经济和社会公正过渡-国际劳工组织.pdf
正当其时、适逢其势:2023中国基础设施REITs可持续发展行动调研报告-普华永道.pdf
浙江省产品碳足迹核算与碳标签推广研究--浙江经济信息中心.pdf
文明的温度:气候变化对西北地区生态、产业及文化遗产系统性影响评估(甘肃)--绿色和平.pdf
投资气候,投资增长-OECD.pdf
资源描述:
Sascha LindigEurac Research - University of LjubljanaTheory STL – seasonal and trend decomposition using LOESS, YoY – Year on Year method S. Lindig, PVPMC China 2 0 1 9 2 01 0 /1 2 /1 9 Comparison of calculation methodologiesHigh quality datasets – Metrics S. Lindig, PVPMC China 2 0 1 9 2 11 0 /1 2 /1 9 Comparison of calculation methodologiesHigh quality datasets – Methodologies 1 . R. B. Cleveland, W. S. Cleveland, J. E. McRae, I. Terpenning, STL A Seasonal-Trend Decomposition Procedure Based on Loess, Journal of official statistics 6 1 1 9 9 0 3 –3 3 .2 . Sascha Lindig, David Moser, Alan Curran, Roger French, Performance Loss Rates of PV systems of Task 1 3 database, IEEE PVSC 2 0 1 9 .3 . Ernest Hasselbrink, Mike Anderson, Zoe Defreitas, Mark Mikofski, Yu-Chen Shen, Sander Caldwell, Akira Terao, David Kavulak, Zach Campeau, David DeGraaff, Validation of the PVLife Model Using 3 Million Module-Years of Live Site Data, in IEEE 3 9 th Photovoltaic Specialists Conference PVSC, IEEE, 2 0 1 3 pp. 0 0 0 7 –0 0 1 2 . https//doi.org/1 0 .1 1 0 9 /PVSC.2 0 1 3 .6 7 4 4 0 8 7 . Seasonal Decomposition of Time Series using Loess STL1,2 Year on Year YoY3 S. Lindig, PVPMC China 2 0 1 9 2 21 0 /1 2 /1 9 Comparison of calculation methodologiesHigh quality datasets – BenchmarkingVAR yearly variation of powerYoY Year on Year – Comparison of daily power valuesLR Linear RegressionSTL Seasonal Time Series Decomposition using LoessC S D C l a s s i c a l S e a s o n a l DecompositionSCSF Statistical clear sky fitting YbY Year-by-Year comparison Power NOCT EURAC PV-systemPoly-crystalline silicon S. Lindig, PVPMC China 2 0 1 9 2 31 0 /1 2 /1 9 Comparison of calculation methodologiesHigh quality datasets – Benchmarking EURAC PV-systemPoly-crystalline siliconVAR yearly variation of powerYoY Year on Year – Comparison of daily power valuesLR Linear RegressionSTL Seasonal Time Series Decomposition using LoessC S D C l a s s i c a l S e a s o n a l DecompositionSCSF Statistical clear sky fitting YbY Year-by-Year comparison Power NOCT S. Lindig, PVPMC China 2 0 1 9 2 41 0 /1 2 /1 9 Comparison of calculation methodologiesHigh quality datasets – BenchmarkingVAR yearly variation of powerYoY Year on Year – Comparison of daily power valuesLR Linear RegressionSTL Seasonal Time Series Decomposition using LoessC S D C l a s s i c a l S e a s o n a l DecompositionSCSF Statistical clear sky fitting YbY Year-by-Year comparison Power NOCT S. Lindig, PVPMC China 2 0 1 9 2 51 0 /1 2 /1 9 Low Medium High S. Lindig, PVPMC China 2 0 1 9 2 61 0 /1 2 /1 9 S. Lindig, PVPMC China 2 0 1 9 2 71 0 /1 2 /1 9 Comparison of calculation methodologiesDigital power plant K. Radouane, A. Lindsay, P. Dupeyrat, B. Braisaz, An advanced model of pv power plants based on modelica, in 2 8 th EU PVSEC Proceedings, Paris, France, 2 0 1 3 Sep. 2 0 1 3 . § Simulated PV data§ Total of 4 systems2 x 5 years repeated weather data2 x 4 years weather data 5 th year colder weather§ PLR for each of the 4 cases2 x PLR 0 /a2 x defined linear PLR valueMakes it possible to validate methods against a KNOWN PLR value S. Lindig, PVPMC China 2 0 1 9 2 81 0 /1 2 /1 9 Comparison of calculation methodologiesDigital power plant – NO degradation – same yearVAR yearly variation of powerYoY Year on Year – Comparison of daily power valuesLS-LR Least Square Linear RegressionR-LR Robust Linear RegressionSTL Seasonal Time Series Decomposition using LoessC S D C l a s s i c a l S e a s o n a l Decomposition SCSF Statistical clear sky fittingYbY Year-by-Year comparison Power NOCT S. Lindig, PVPMC China 2 0 1 9 2 91 0 /1 2 /1 9 Comparison of calculation methodologiesDigital power plant – NO degradation – different yearsVAR yearly variation of powerYoY Year on Year – Comparison of daily power valuesLS-LR Least Square Linear RegressionR-LR Robust Linear RegressionSTL Seasonal Time Series Decomposition using LoessC S D C l a s s i c a l S e a s o n a l Decomposition SCSF Statistical clear sky fittingYbY Year-by-Year comparison Power NOCT S. Lindig, PVPMC China 2 0 1 9 3 01 0 /1 2 /1 9 Comparison of calculation methodologiesDigital power plant – unknown degradation – different yearsVAR yearly variation of powerYoY Year on Year – Comparison of daily power valuesLS-LR Least Square Linear RegressionR-LR Robust Linear RegressionSTL Seasonal Time Series Decomposition using LoessC S D C l a s s i c a l S e a s o n a l Decomposition SCSF Statistical clear sky fittingYbY Year-by-Year comparison Power NOCT
点击查看更多>>
收藏
下载该资源
京ICP备10028102号-1
电信与信息服务业务许可证:京ICP证120154号
地址:北京市大兴区亦庄经济开发区经海三路
天通泰科技金融谷 C座 16层 邮编:102600