切换
资源分类
文档管理
收藏夹
最新动态
登陆
注册
关闭
返回
下载
相似
相似资源:
ArrayCVD工艺培训
上海微系统所孟凡英老师-如何提高hit太阳电池的电流密度?
冯志强-高效晶硅太阳电池与组件技术
郑海军-异质结产业发展现状及产业链投资机会
汉能高效硅异质结技术研发和产业化进展-2019
新格拉斯异质结工程概要
高效异质结太阳能电池技术/钧石能源
非晶硅/晶体硅异质结(HAC)太阳电池 结构与量产技术剖析-南昌大学周浪
东方日升崔艳峰《HJT电池光致衰减(增益)的研究》
陕西众森张鹤仙《硅异质结(SHJ)太阳电池光致增效量产技术与设备解决方案》
钧石罗骞《异质结电池金属化路线和可靠性》
HJT电池的降本之路-中科院王文静
中泰证券冯胜-异质结电池:光伏行业发展的第五次技术革命
20200219-太平洋证券-光伏设备行业报告:PERC持续高景气,大尺寸及HJT引领设备迭代
电气设备行业光伏异质结电池系列报告之一:HJT,有望开启光伏新一轮技术革命-20200204-中银国际-32页
协鑫纳米 - 钙钛矿技术产业化
Archers Ins新型TCO设备应用前景展望update(无锡异质结论坛).pptx
《非晶硅_晶体硅异质结太阳能电池》Wolfgang_Rainer
2018异质结电池报告集合
光伏下一个风口:N型异质结电池 中信建投 - 王革
09-高效平面异质结钙钛矿电池-游经碧
资源描述:
Solar Cell Development Status and New Generation of PV Technology Institute of Solar Energy Shanghai Jiaotong University, Shanghai, China Prof. Shen Wenzhong Silicon solar cell has the highest convert efficiency in solar energy industry and is also with mature technology compare to other solar cell; therefore it plays the leading role in large scale application and mass production. In this paper, solar cell development status and new generation of PV technology will be discussed; at the same time, some bottlenecks and difficulties in silicon wafer R 效率 16-18未来成本预测晶硅电池组件可降到 0.5~ 0.6/Wp; 效率 19-21。这样可以导致光伏发电成本与常规发电成本相等甚至以下。晶体硅太阳电池十多年来一直是市场的主流 80以上 ,未来 10年应该也是Fuhs et al., in 1974 proposed combining c-Si and hydrogenated amorphous silicon a-SiH to produce heterojuction HJ solar cells.Research groups in Japan innovate the design inserting a thin intrinsic a-SiH layer to passivate the defects of the surface of c-Si wafer between c-Si substrate and a-SiH emitter.Low conversion efficiencyCalled “ HIT”Heterojunction with Intrinsic Thin layerHIT new high efficiency cells双层膜异质结有机薄膜太阳电池1986年美籍华裔科学家邓青云博士率先实现, 1-2 的转换效率。先天缺陷有机半导体介质厚度必须达到 100nm充分吸收太阳光,但这比激子扩散长度长了很多,激子在还没有充分地分离为载流子时,就已经复合了。年美籍华裔科学家邓青云博士率先实现, 的转换效率。先天缺陷有机半导体介质厚度必须达到 充分吸收太阳光,但这比激子扩散长度长了很多,激子在还没有充分地分离为载流子时,就已经复合了。Appl. Phys. Lett. 48, 183 1986; Nature 395, 257 1998Anisotropic alkaline texturization is a standard process for monocrystallineSi and is widely applied in present solar cell production. However, for polycrystalline Si, this method is not effective because only a fraction of the grains have the [100] crystallographic orientation.Si However, for polycrystalline Si, this method is not effectivePlanar Silicon Nanowire Array Solar CellsCoaxial Silicon Nanowire Solar CellsNature London 449, 885 2007respectively, by the built-in electric field.The photogenerated electrons and holes are swept into the n-shell and p-core, respectively, by the built-in electric field .Single-crystalline silicon nanowire p-cores were synthesized by means of a nanocluster-catalysedVLS method, and then chemical vapourdeposition was used to deposit i-and n-type nanocrystalline silicon shells.method, and then chemical vapour was used to deposit i-Silicon Nanowire Radial p-n Junction Solar CellsNano Lett. 10, 1082 2010This new method dramatically reduces surface roughness and improves control over the nanowire diameter and density, leading to greatly enhanced Voc, FF, and Jscvalues, ultimately yielding 10 times higher efficiencies using thin silicon absorber films.higher efficiencies using thin silicon absorber films.The 4.83 average efficiency for the 8μ m absorber silicon nanowire array solar cells is about 20 higher thanresults on 8μ m thick silicon ribbon solar cells, while the 20μ m absorber silicon nanowire cell average efficiency of 5.30.μμsolar cells, while the 20μ等离子体陷光效应优点对快速发展的国际光伏市场非常重要,尤其是近年热门的 CdTe和 CIGS薄膜太阳电池,根据目前的发展情况到 2020年 Te和 In 的年需求量会超过现在的世界年产量,尤其是 In可能甚至会接近地球上目前探明的 In贮量。1. 等离子体光吸收增强方式有效减少光伏吸收层厚度 10-100倍,减少材料用量。对快速发展的国际光伏市场非常重要,尤其是近年热门的 和 薄膜太阳电池,根据目前的发展情况到 年 和 的年需求量会超过现在的世界年产量,尤其是 In可能甚至会接近地球上目前探明的 In 贮量。减少电池厚度可降低暗电流,使开路电路增加,从而使效率随厚度降低对数式升高,直到受制于表面复合。降低半导体吸收层厚度可以使载流子仅仅需要迁移较短距离而被捕获,从而可以使用少数载流子扩散长度较短的低质量多晶硅、量子点及有机半导体材料。2. 等离子体陷光效应可以提高太阳电池电学性能。减少电池厚度可降低暗电流,使开路电路增加,从而使效率随厚度降低对数式升高,直到受制于表面复合。3. 等离子体陷光效应降低材料质量的要求。降低半导体吸收层厚度可以使载流子仅仅需要迁移较短距离而被捕获,从而可以使用少数载流子扩散长度较短的低质量多晶硅、量子点及有机半导体材料。
点击查看更多>>
收藏
下载该资源
京ICP备10028102号-1
电信与信息服务业务许可证:京ICP证120154号
地址:北京市大兴区亦庄经济开发区经海三路
天通泰科技金融谷 C座 16层 邮编:102600