切换
资源分类
文档管理
收藏夹
最新动态
登陆
注册
关闭
返回
下载
相似
相似资源:
中信博 王士涛 人工智能光伏跟踪系统的实证数据研究
江苏中信博新能源科技股份有限公司CTO王士涛《光伏智能跟踪系统技术要求及标准化需求分析》
太阳能光伏跟踪支架推杆系统解决方案
光伏跟踪支架基础知识
大尺寸组件,跟踪器解决方案
中信博新一代人工智能光伏跟踪解决方案白皮书
逆变器与跟踪支架智能联控技术SDS(智能跟踪算法)白皮书
东方证券-中信博(688408)站在全球化的拐点,打造跟踪支架的中国名片-200923
中信博-新型BIPV系统屋顶光伏系统解决方案
双面组件跟踪系统的技术经济性表现-cell press -joule
针对Tiger高效组件的跟踪系统解决方案-中信博王士涛
【PVPMC】中信博-王士涛-双面组件跟踪人工智能解决方案
智能井盖解决方案
光伏支架设计方案受力计算书-参考[1]
大型光伏电站扰动区支架基础选型的探讨
屋面支架方案-常用配件(导轨)
屋面支架方案-常用配件(横梁)
屋面支架方案-常用配件(前底座)
屋面支架方案-安装节点图(二)
屋面支架方案-常用配件(后底座)
屋面支架方案-安装节点图(一)
资源描述:
光伏系统中最大功率跟踪的研究0 引言太阳能作为绿色能源,具有无污染,无噪音,取之不尽,用之不竭等优点,越来越受到人们的关注。由于光伏系统目前的主要问题是电池的转换效率低且价格昂贵,因此,如何进一步提高太阳电池的转换效率,如何充分利用光伏阵列所转换的能量,一直是光伏系统研究的重要方向。1 太阳电池的特性太阳电池的 p- u 特性,图 1( a)为温度变化时的 p- u 特性曲线,图 1( b)是日照强度变化时的 p- u 特性曲线。太阳电池具有明显的非线性,既包含了电压源的特性,也包含了电流源的特性。a 温度变化时 b 日照强度变化时图 1 太阳电池的 p- u 特性曲线太阳电池的输出受日照强度,电池结温等因素的影响。当结温增加时,太阳电池的开路电压下降,短路电流稍有增加,最大输出功率减小;当日照强度增加时,太阳电池的开路电压变化不大,短路电流增加,最大输出功率增加。在一定的温度和日照强度下,太阳电池具有唯一的最大功率点, 当太阳电池工作在该点时, 能输出当前温度和日照条件下的最大功率。2 太阳电池的最大功率跟踪在光伏系统中,通常要求太阳电池的输出功率始终最大,即系统要能跟踪太阳电池输出的最大功率点。太阳电池的伏安特性,图中 L 是负载特性曲线,交点 a, b, c, d, e 对应于不同的工作点。可以看出,这些工作点并不正好落在电池提供的最大功率点 a ,b , c , d , e 处, 这就不能充分利用在当前条件下电池所能提供的最大功率。因此,必须在太阳电池和负载之间加入阻抗变换器,使得变换后的工作点正好和太阳电池的最大功率点重合,使太阳电池以最大功率输出,这就是所谓的太阳电池的最大功率跟踪。2. 1 CVT 方式的 MPPT 从图 2 中可以看出,当温度一定时,太阳电池的最大功率点几乎落在同一根垂直线的两侧邻近,这就有可能把最大功率点的轨迹线近似地看成电压 Uconst 的一根垂直线,亦即只要保持太阳电池的输出端电压为常数且等于某一日照强度下相应于最大功率点的电压,就可以大致保证在该一温度下太阳电池输出最大功率。 把最大功率点跟踪简化为恒电压跟踪 CVT,这就是 CVT控制的理论依据。 实现 CVT的原理。 图中 Usp*是给定工作点电压 , 对应于某一温度下的最大功率点; Usp是太阳电池的实际输出电压。 给定电压和实际电压比较后经过 PI 调节,调节结果与三角波比较得到 PWM脉冲,驱动功率器件,从而调节太阳电池的负载阻抗。不同的 PWM脉宽对应不同的负载阻抗。图 2 太阳电池的伏安特性曲线图 3 CVT 原理图CVT 方式具有控制简单,可靠性高,稳定性好,易于实现等优点,比一般光伏系统可望多获得 20%的电能,较之不带 CVT的直接耦合要有利得多。但是,这种跟踪方式忽略了温度对太阳电池开路电压的影响。以单晶硅太阳电池为例,当环境温度每升高 1℃时,其开路电压下降率为 0.35 %~ 0.45 %。 这表明太阳电池最大功率点对应的电压也随环境温度的变化而变化。 对于四季温差或日温差比较大的地区 ,CVT 方式并不能在所有的温度环境下完全地跟踪最大功率。2. 2 True MPPTTMPPT 鉴于 CVT方式的局限性,它只能是一定温度条件下的最大功率跟踪,在不同温度条件下仍有功率损失。 真正的 MPPT是指系统在任何温度和日照条件下都能跟踪太阳电池的最大功率。目前,最常用的控制方法主要是扰动观察法和电导增量法。扰动观察法由于实现简单, 是最常用的方法。 它通过对太阳电池输出电压、 电流的检测,得到电池当前的输出功率,再将它与前一时刻的记忆功率相比较,从而确定给定参考电压调整的方向。若 p0 ,说明参考电压调整的方向正确,可以继续按原来的方向调整;若 p0 , 说明参考电压调整的方向错误, 需要改变调整的方向。 当给定参考电压增大时, 若输出功率也增大, 则工作点位于图 4 中最大功率点 pmax左侧, 需继续增大参考电压;若输出功率减小, 则工作点位于最大功率点 pmax右侧, 需要减小参考电压。 当给定参考电压减小时, 若输出功率也减小, 则工作点位于 pmax的左侧, 需增大参考电压; 若输出功率增大,则工作点位于 pmax的右侧,需继续减小参考电压。图 4 p - u 特性曲线给定参考电压变化的过程实际上是一个功率寻优的过程。由于在寻优过程中不断地调整参考电压,因此,太阳电池的工作点始终在最大功率点附近振荡,无法稳定工作在最大功率点上。同时,当日照强度快速变化时,参考电压调整方向可能发生错误。电导增量法的原理是 在最大功率点处, 有 dp/du0 , 即满足 di/du - i/u 。 理论上它比扰动观察法好,能适应日照强度快速变化,但由于传感器的精密度等因素,电导增量法往往难以实现。由于太阳电池特性的 if ( u)关系是一个单值函数,因此,只要保证太阳电池的输出电压在任何日照及温度下都能实时地保持为与该条件相对应的 Um值, 就一定可以保证电池在任何瞬间都输出其最大功率。3 MPPT 的结构CVT 控制结构 , 它将太阳电池工作电压作为反馈, 达到稳定电池工作点电压的目的。 图中if1u 与负载特性有关。图 5 CVT 控制框图TMPPT 的实质是在 CVT的基础上,实时的改变太阳电池的工作点电压,使得工作点电压始终等于最大功率点处的电压, 从而实现最大功率点跟踪。 它的内环就是 CVT。 TMPPT的控制框图。图 6 TMPPT 的控制框图4 实验结果采用 TMPPT实现太阳电池的最大功率跟踪, 通过在太阳能模拟器上进行实验可得的结果,图中的*就是太阳电池的工作点。它表明太阳电池工作在最大功率点处, TMPPT有良好的跟踪效果。图 7 TMPPT 的实验结果
点击查看更多>>
收藏
下载该资源
京ICP备10028102号-1
电信与信息服务业务许可证:京ICP证120154号
地址:北京市大兴区亦庄经济开发区经海三路
天通泰科技金融谷 C座 16层 邮编:102600