切换
资源分类
文档管理
收藏夹
最新动态
登陆
注册
关闭
返回
下载
相似
相似资源:
分布式能源及独立微网容量配置与运行优化研究
清华AI研究院-区块链发展研究报告2020
20-07_Braid_PVPMC_sm3
Ransome_PVPMC_webinar_20_08_05
Schneider_PVPMC_Webinar_2020-08-05_Solargis
Prilliman_PVPMC_webinar_2020-08-05
UL_MultipleSatelliteModelsMCP_2020-06-18_Slides
GroundWork-PVPMC-2020-06-22-Slides
PVMPC-Clean-Power-Research-Data-Sources-and-Validation-24062020
PVPMC_Webinar_Martin_Herrerias
BIPV建筑光伏一体化产品与解决方案
《PVsyst 6 中文手册》2019.03.12
遮光物体对双面组件能量收益率影响的模型-朱强忠-隆基
基于人工神经网络的双面光伏系统设计研究-韩利生-苏州中来光伏新材股份有限公司
环境因素对光伏工程发电影响的研究-惠星-西北勘测设计研究院有限公司
晶体硅光伏组件在服役过程中功率损失的理论计算与数值模拟研究-董娴-中山大学
基于SCADA数据的光伏系统故障诊断与分类-赵莹莹-协合新能源集团有限公司
应用光线追踪方法建模双面电站系统 范例与验证-薄中南 Jefferson Bor-Fraunhofer ISE
光伏组件清洗机器人改善光伏电站发电性能的研究-王军-上海安轩自动化科技有限公司
光伏阵列的平面太阳能辐照度和辐射计算-王斯成-国家发改委能源研究所
资源描述:
Towards a Generalized, Fully-anisotropic Transposition Model PVPMC Webinar on Solar Resource Assessment June 24, 2020 Martín Herrerías Azcué HLRS - NUM, Stuttgart herreriashlrs.de * * Motivation Empirical transposition models are limited Fitted on shade-free conditions No room for arbitrary distributions clouds Diffuse shading is difficult to localize Rigid in their inputs – GTI sensors – Shaded sensors Applications – Nowcasting OM – Short-term forecasting – Site assessment – Bi-Facial modeling – . Martín Herrerías Azcué HLRS 6/24/2020 2 Source Capdevila, Herrerías Marola 2014 Prior art View factors – Evans Coombe 1959 / Anderson 1964 Continuous Distribution Models CDM s for Sky Luminance – Hooper Brunger 1980 – Nakamura 1985 – Perez et al 1993 – Kittler Darula 2002 Masks on CDM s – [Forest Ecology / Building Simulation] – Bosch et al. 2010 – Ivanova 2013 Discretized CDM s – Satel-Light Project 1996 – Goss et al. 2014 Martín Herrerías Azcué HLRS 6/24/2020 3 Source Evans Coombe 1959 Irradiance Transposition 6/24/2020Martín Herrerías Azcué HLRS 4 Transposition by View Factors 6/24/2020Martín Herrerías Azcué HLRS 5 View Factors by Custom Projection 6/24/2020Martín Herrerías Azcué HLRS 6 CDM s as Transposition Model *Martín Herrerías Azcué HLRS * Empirical Continuous Radiance Distribution Models can be used as a drop- in replacement for transposition models Igawa, Koga, Matsuza Nakamura 2004 – Parametrization of std. gradation x scattering function in terms of a single „Sky-index“ – Fitted to radiance [W/m²sr], not luminance [cd/m²sr] Discretizing the model seems like extra-steps, but can reduce computational effort and memory requirements CDM s as Transposition Model 24.06.2020Martín Herrerías Azcué HLRS 8 NREL s Data for Validating Models - Marion et al. 2014 – Eugene, Oregon 44°N, 123°W, 145 mASL, 44° tilt CDM s as Transposition Model 24.06.2020Martín Herrerías Azcué HLRS 9 NREL s Data for Validating Models - Marion et al. 2014 – Golden, Colorado 39.7°N, 105.2°W, 1798 mASL, 40° tilt CDM s as Transposition Model 24.06.2020Martín Herrerías Azcué HLRS 10 NREL s Data for Validating Models - Marion et al. 2014 – Cocoa, Florida 28.4°N, 80.5°W, 12 mASL, 28.5° tilt Effect of discretization Integration errors increase with patch size and steeper gradients Sign of bias gradation Final transposition error no shading rather insensitive to anything above 10 sky regions. Moving circumsolar regions don t seem to reduce error, except in simplest cases *Martín Herrerías Azcué HLRS * Effect of discretization cont. 24.06.2020Martín Herrerías Azcué HLRS 12 Estimating Radiance using View Factors 6/24/2020Martín Herrerías Azcué HLRS 13 Least-Norm Solution 6/24/2020Martín Herrerías Azcué HLRS 14 Test case Least L2 norm Ridge Regression Data from the Karl von Ossietzky University of Oldenburg Secondary Standard Pyranometers for – GHI, DHI – South 45° – South 60° – South-East 45° – South-West 45° 10000 points at random, from 1 year of 1-minute data 6/24/2020Martín Herrerías Azcué HLRS 15 Least-Norm Solution GHI S 45° Uni. Oldenburg 6/24/2020Martín Herrerías Azcué HLRS 16 Least-Norm Solution GHI S 60° SE 45° Uni. Oldenburg 6/24/2020Martín Herrerías Azcué HLRS 17 Future Work Decomposition Problem hard soft constraints, uncertainty and smoothness priors to reduce overfitting Estimating diffuse fraction Testing Validation, new data sets and sensor configurations Spectral content correction for individual components Obstacle terrain self shadows, non-Lambertian albedo Performance Optimization 6/24/2020Martín Herrerías Azcué HLRS 18 24.06.2020Martín Herrerías Azcué HLRS 19 Thanks Annete Hammer, Jorge Lezaca, Hugo Capdevila,. University of Oldenburg, NREL, GroundWork and PVPMC Everyone, for your attention References Anderson, M.C., 1964. Studies of the Woodland Light Climate I. The Photographic Computation of Light Conditions. Journal of Ecology 52, 27–41. https//doi.org/10.2307/2257780 Bosch, J.L., Batlles, F.J., Zarzalejo, L.F., López, G., 2010. Solar resources estimation combining digital terrain models and satellite images techniques. Renewable Energy 35, 2853–2861. https//doi.org/10.1016/j.renene.2010.05.011 Capdevila, H., Herrerías, M., Marola, A., 2014. Anisotropic Diffuse Shading Model for Sun-tracking Photovoltaic Systems. Energy Procedia, 2013 ISES Solar World Congress 57, 144–151. https//doi.org/10.1016/j.egypro.2014.10.018 Darula, S., Kittler, R., 2002. CIE general sky standard defining luminance distributions, in Proc. Conf. ESim 2002. Presented at the Canadian conference on building energy simulation, Montreal, Canada, p. 9. Evans, G.C., Coombe, D.E., 1959. Hemisperical and Woodland Canopy Photography and the Light Climate. Journal of Ecology 47, 103–113. https//doi.org/10.2307/2257250 Goss, B., Cole, I., Betts, T., Gottschalg, R., 2014. Irradiance modelling for individual cells of shaded solar photovoltaic arrays. Solar Energy 110, 410–419. https//doi.org/10.1016/j.solener.2014.09.037 Hooper, F.C., Brunger, A.P., 1980. A Model for the Angular Distribution of Sky Radiance. Journal of Solar Energy Engineering 102, 196. https//doi.org/10.1115/1.3266154 6/24/2020Martín Herrerías Azcué HLRS 20 References cont. Igawa, N., Koga, Y., Matsuzawa, T., Nakamura, H., 2004. Models of sky radiance distribution and sky luminance distribution. Solar Energy 77, 137–157. https//doi.org/10.1016/j.solener.2004.04.016 Ineichen, P., 1996. Use of Meteosat data to produce sky luminance maps. Satellight, Commision of the European Communities, Bergen. Ivanova, S.M., 2013. Estimation of background diffuse irradiance on orthogonal surfaces under partially obstructed anisotropic sky. Part I – Vertical surfaces. Solar Energy 95, 376–391. https//doi.org/10.1016/j.solener.2013.01.021 Marion, B., Anderberg, A., Deline, C., Cueto, J. del, Muller, M., Perrin, G., Rodriguez, J., Rummel, S., Silverman, T.J., Vignola, F., Kessler, R., Peterson, J., Barkaszi, S., Jacobs, M., Riedel, N., Pratt, L., King, B., 2014. New data set for validating PV module performance models, in 2014 IEEE 40th Photovoltaic Specialist Conference PVSC. Presented at the 2014 IEEE 40th Photovoltaic Specialist Conference PVSC, pp. 1362–1366. https//doi.org/10.1109/PVSC.2014.6925171 Nakamura, H., Oki, M., Hayashi, Y., 1985. Luminance distribution of Intermediate Sky. Journal of Light Visual Environment 9, 1_6-1_13. https//doi.org/10.2150/jlve.9.1_6 Perez, R., Seals, R., Michalsky, J., 1993. All-weather model for sky luminance distributionPreliminary configuration and validation. Solar Energy 50, 235–245. https//doi.org/10.1016/0038-092X9390017-I 6/24/2020Martín Herrerías Azcué HLRS 21
点击查看更多>>
收藏
下载该资源
京ICP备10028102号-1
电信与信息服务业务许可证:京ICP证120154号
地址:北京市大兴区亦庄经济开发区经海三路
天通泰科技金融谷 C座 16层 邮编:102600