返回 相似
资源描述:
不同透过率下非晶硅光伏窗综合性能研究与结构优化 IV Abstract Semi-transparent amorphous silicon photovoltaic a-Si PV windows can block and absorb a part of solar radiation, which can not only reduce the cooling load caused by solar heat gain passively, but also avoid the indoor daylighting glare effectively. In addition, a-Si PV windows can convert solar energy into electricity through the photovoltaic effect so as to reduce solar heat gain actively. The electricity generated by PV panels can be consumed to compensate the indoor air-conditioning and lighting energy use as well. However, there are many problems regarding the design and utilization of a-Si PV windows need to be solved. The transmittances of semi-transparent a-Si PV windows would affect its photoelectric conversion efficiency, indoor daylight performance and solar heat gain, which can affect the lighting and air-conditioning energy consumptions. Moreover, for the common ventilated a-Si PV window, its energy conservation is related to the structural parameters and ventilation modes of itself. Therefore, in order to determine the optimal visible light transmittance, structure parameters and ventilation strategy of a-Si PV windows, a ventilated a-Si PV window and a hollow a-Si PV window were employed to investigate the overall energy performance in this study. A method for determining the power generation characteristics of a-Si PV modules with different transmittances was proposed firstly for the Sandia Array Performance Model SAPM. An integrated model of heat transfer, daylighting and power generation of a-Si PV windows was developed in EnergyPlus and then validated by experiment data. Furthermore, the validated model was used to study the overall energy performance and energy saving potential of a-Si PV window under different climatic zones. The indoor static and annual dynamic daylight performance of a hollow a-Si PV window were simulated utilizing the building light environmental simulation tool DIVA-for-Rhino. The daylight performance of an a-Si PV window and an ordinary double-glazed window were compared afterwards. Further, the overall energy performance of a-Si PV windows with various air gap depths was calculated based on Airflow Network Model in EnergyPlus. Then the optimal air gap depth and ventilation strategy for ventilated a-Si PV windows were studied. Finally, From the perspectives of overall energy performance and visual comfort, the comprehensive optimum design and 硕士学位论文 V energy-saving potential analysis of the a-Si PV window with different transmittances were investigated. The significant conclusions from this study are summarized as follows 1 Considering the minimum energy consumption of buildings, the optimal transmittances of a-Si PV windows for Guangzhou, Kunming, Changsha, Beijing and Harbin are 0.220.25, 0.25, 0.250.3, 0.250.3 and 0.35, respectively. For severe cold regions such as Harbin, we hope more solar radiation enters in the room through the window to reduce the heating energy consumption, thus the a-Si PV modules with higher transmittance should be adopted. For hot-summer and warm-winter regions such as Guangzhou, we hope less solar radiation enters in the room through the window, so the a-Si PV modules with lower transmittance would be a good choice. For the others regions of China, the optimal range of transmittances for a-Si PV modules are 2030 for the purpose of energy conservation. 2 Considering the daylighting performance and visual confort, the optimal transmittances of a-Si PV windows in Guangzhou, Kunming, Changsha, Beijing and Harbin are 0.40.5, 0.3, 0.40.6, 0.22 and 0.22, respectively. For regions with higher latitudes such as Harbin and Beijing, due to their lower solar altitude, it is hoped to utilize the a-Si PV thin film modules with lower transmittance to reduce glare. For regions with lower latitudes such as Guangzhou, due to its higher solar altitude angle, the a-Si PV modules with higher transmittance would be a good choice to achieve the optimum illuminance. 3 The cooling energy consumption of the natural ventilation mode in Changsha is the least compared with other ventilation modes, while the heating energy consumption of the non-ventilation mode with the all louvers closed is the least. The mode that minimizes the total energy consumption of air-conditioning is still the natural ventilation mode. Taking into account the seasonal factors, the natural ventilation mode in summer for the purpose of heat dissipation and the no-ventilation mode for the purpose of thermal insulation could be adopted. In transition season, the buoyancy-driven ventilation mode would be a good choice for the ventilated double-skin PV window. The results of this study can be used as a guidance for the design and utilization of semi-transparent a-Si PV windows in different climatic regions in China. Key Words Building integrated photovoltaic; Semi-transparent a-Si PV window; Visible transmittance; Overall energy performance; Daylighting performance; Visual comfort; Structure optimization 不同透过率下非晶硅光伏窗综合性能研究与结构优化 VI 目 录 学位论文原创性声明和学位论文版权使用授权书 . I 摘要 II Abstract IV 第 1 章 绪论 .1 1.1 研究背景与意义 .1 1.1.1 可再生能源发展趋势 .1 1.1.2 光伏建筑一体化 .1 1.1.3 太阳能光伏窗 .2 1.1.4 本文的研究意义 .4 1.2 国内外研究进展 .5 1.2.1 光伏窗 /墙传热性能 5 1.2.2 光伏窗 /墙采光性能 7 1.2.3 光伏窗 /墙发电性能 8 1.2.4 光伏窗 /墙综合性能 9 1.3 本文的主要工作 . 11 第 2 章 半透明非晶硅光伏窗模型 . 13 2.1 非晶硅光伏窗结构 . 13 2.2 模型建立过程 . 14 2.2.1 光伏组件特性实测 . 15 2.2.2 测试数据处理 . 17 2.3 半透明非晶硅光伏窗传热模型 18 2.4 半透明非晶硅光伏窗采光模型 19 2.5 半透明非晶硅光伏窗发电模型 20 2.6 EnergyPlus 综合模型 . 24 2.7 本章小结 . 25 第 3 章 光伏窗模型校验 26 3.1 实验平台 . 26 3.2 传热模型校验 . 27 3.3 自然采光模型校验 . 29 3.4 发电模型校验 . 29 3.5 本章小结 . 30 第 4 章 不同透过率下非晶硅光伏窗综合能效性能优化 31 4.1 模型建立过程 . 31 硕士学位论文 VII 4.2 不同透过率组件的光学特性 32 4.3 不同透过率组件的发电特性 32 4.4 不同气候区非晶硅光伏窗透过率优化 34 4.4.1 夏热冬暖地区 以广州为例 35 4.4.2 温和地区 以昆明为例 37 4.4.3 夏热冬冷地区 以长沙为例 38 4.4.4 寒冷地区 以北京为例 40 4.4.5 严寒地区 以哈尔滨为例 41 4.4.6 优化结果 . 42 4.5 本章小结 . 42 第 5 章 不同透过率下非晶硅光伏窗自然采光性能优化 44 5.1 非晶硅光伏窗结构 . 44 5.2 非晶硅光伏窗自然采光模型 45 5.3 静态光环境模拟 . 46 5.3.1 采光系数( DF) 46 5.3.2 眩光可能性( DGP) . 47 5.4 动态光环境模拟 . 49 5.4.1 全自然采光时间百分比( DA ) 49 5.4.2 有效全自然采光时间百分比( UDA ) 49 5.4.3 连续全自然采光时间百分比( cDA ) . 50 5.4.4 空间自然采光百分比( sDA ) . 51 5.4.5 全年眩光可能性( eDGPs) 51 5.5 不同气候区非晶硅光伏窗透过率优化 52 5.5.1 夏热冬暖地区 以广州为例 52 5.5.2 温和地区 以昆明为例 54 5.5.3 夏热冬冷地区 以长沙为例 55 5.5.4 寒冷地区 以北京为例 56 5.5.5 严寒地区 以哈尔滨为例 57 5.5.6 优化结果 . 58 5.6 本章小结 . 58 第 6 章 非晶硅光伏窗结构参数与使用策略优化 . 60 6.1 不同通风模式下非晶硅光伏窗综合能效性能优化 . 60 6.1.1 室内空调供暖总能耗 . 61 6.1.2 室内照明能耗 . 62 6.1.3 组件发电性能 . 63 不同透过率下非晶硅光伏窗综合性能研究与结构优化 VIII 6.1.4 最佳工作策略探讨 . 64 6.2 不同通风间距下非晶硅光伏窗综合能效性能优化 . 65 6.2.1 室内空调供暖总能耗 . 66 6.2.2 室内照明能耗 . 66 6.2.3 组件发电性能 . 67 6.2.4 最佳空腔间距探讨 . 67 6.3 本章小结 . 68 结论 . 70 参考文献 . 73 致谢 . 80 附录 A (攻读学位期间所取得的科研成果) . 81 附录 B(攻读学位期间所参与的科研项目) 83
点击查看更多>>

京ICP备10028102号-1
电信与信息服务业务许可证:京ICP证120154号

地址:北京市大兴区亦庄经济开发区经海三路
天通泰科技金融谷 C座 16层 邮编:102600